CORTICOSPINAL TERMINATIONS IN 2 NEW-WORLD PRIMATES - FURTHER EVIDENCE THAT CORTICOMOTONEURONAL CONNECTIONS PROVIDE PART OF THE NEURAL SUBSTRATE FOR MANUAL DEXTERITY

被引:212
作者
BORTOFF, GA
STRICK, PL
机构
[1] VET ADM MED CTR, RES SERV 151, SYRACUSE, NY 13210 USA
[2] SUNY HLTH SCI CTR, DEPT PHYSIOL, SYRACUSE, NY 13210 USA
[3] SUNY HLTH SCI CTR, DEPT NEUROSURG, SYRACUSE, NY 13210 USA
关键词
CERVICAL SPINAL CORD; HAND MOVEMENT; MOTOR CONTROL; PRIMARY MOTOR CORTEX;
D O I
10.1523/JNEUROSCI.13-12-05105.1993
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Anterograde transport of 2-10% WGA-HRP was used to examine the pattern of termination of efferents from the primary motor cortex to cervical segments of the spinal cord in cebus (Cebus apella) and squirrel (Saimiri sciureus) monkeys. We have compared the pattern of termination in these monkeys because of marked differences in their manipulative abilities. Both primates have pseudo-opposable thumbs; however, only cebus monkeys use independent finger movements to pick up small objects. We found that corticospinal terminations in cervical segments of the cebus monkey are located in three main zones: a dorsolateral region of the intermediate zone, a dorsomedial region of the intermediate zone, and the ventral horn. The projection to the ventral horn in these monkeys is particularly dense at C8-T1 segments, where terminations form a ''ring'' that encircles the lateral motoneuronal cell group. In contrast, there are only two main zones of terminations in the squirrel monkey: a dorsolateral region of the intermediate zone and a dorsomedial region of the intermediate zone. As others have noted, efferents from the primary motor cortex of squirrel monkeys have, at best, only sparse terminations within the ventral horn. Thus, there are marked differences between cebus and squirrel monkeys in the extent of corticospinal terminations within the ventral horn. These observations provide further support for the concept that monosynaptic projections from the primary motor cortex to motoneurons in the ventral horn provide part of the neural substrate for dexterous movements of the fingers.
引用
收藏
页码:5105 / 5118
页数:14
相关论文
共 85 条
[1]   TRANSNEURONAL TRANSPORT OF WHEAT-GERM-AGGLUTININ CONJUGATED HORSERADISH-PEROXIDASE INTO LAST ORDER SPINAL INTERNEURONS PROJECTING TO ACROMIODELTOIDEUS AND SPINODELTOIDEUS MOTONEURONS IN THE CAT .1. LOCATION OF LABELED INTERNEURONS AND INFLUENCE OF SYNAPTIC ACTIVITY ON THE TRANSNEURONAL TRANSPORT [J].
ALSTERMARK, B ;
KUMMEL, H .
EXPERIMENTAL BRAIN RESEARCH, 1990, 80 (01) :83-95
[2]   INTEGRATION IN DESCENDING MOTOR PATHWAYS CONTROLLING THE FORELIMB IN THE CAT .12. INTERNEURONES WHICH MAY MEDIATE DESCENDING FEEDFORWARD INHIBITION AND FEEDBACK INHIBITION FROM THE FORELIMB TO C3-C4 PROPRIOSPINAL NEURONS [J].
ALSTERMARK, B ;
LUNDBERG, A ;
SASAKI, S .
EXPERIMENTAL BRAIN RESEARCH, 1984, 56 (02) :308-322
[3]   TRANSNEURONAL TRANSPORT OF WHEAT-GERM-AGGLUTININ CONJUGATED HORSERADISH-PEROXIDASE INTO LAST ORDER SPINAL INTERNEURONS PROJECTING TO ACROMIODELTOIDEUS AND SPINODELTOIDEUS MOTONEURONS IN THE CAT .2. DIFFERENTIAL LABELING OF INTERNEURONS DEPENDING ON MOVEMENT TYPE [J].
ALSTERMARK, B ;
KUMMEL, H .
EXPERIMENTAL BRAIN RESEARCH, 1990, 80 (01) :96-103
[4]   TRANS-NEURONAL LABELING OF NEURONS PROJECTING TO FORELIMB MOTONEURONS IN CATS PERFORMING DIFFERENT MOVEMENTS [J].
ALSTERMARK, B ;
KUMMEL, H .
BRAIN RESEARCH, 1986, 376 (02) :387-391
[5]  
[Anonymous], 1967, HDB LIVING PRIMATES
[6]   TOOL USE IN CEBUS-APELLA - A CASE-STUDY [J].
ANTINUCCI, F ;
VISALBERGHI, E .
INTERNATIONAL JOURNAL OF PRIMATOLOGY, 1986, 7 (04) :351-363
[7]   TOPOGRAPHICAL ORGANIZATION OF CORTICAL EFFERENT ZONES PROJECTING TO DISTAL FORELIMB MUSCLES IN MONKEY [J].
ASANUMA, H ;
ROSEN, I .
EXPERIMENTAL BRAIN RESEARCH, 1972, 14 (03) :243-+
[8]   CORTICAL REPRESENTATION AND FUNCTIONAL SIGNIFICANCE OF THE CORTICOMOTONEURONAL SYSTEM [J].
BERNHARD, CG ;
BOHM, E .
AMA ARCHIVES OF NEUROLOGY AND PSYCHIATRY, 1954, 72 (04) :473-502
[9]  
Bernhard CG, 1953, ACTA PHYSIOL SCAND, V29, P79, DOI DOI 10.1111/J.1365-201X.1953.TB10772.X
[10]  
BORTOFF G A, 1990, Society for Neuroscience Abstracts, V16, P729