THE POLE POLE 3-D DC-RESISTIVITY INVERSE PROBLEM - A CONJUGATE-GRADIENT APPROACH

被引:72
作者
ELLIS, RG
OLDENBURG, DW
机构
[1] Department of Geophysics and Astronomy, University of British Columbia, Vancouver
关键词
ELECTRICAL RESISTIVITY; INVERSE PROBLEM;
D O I
10.1111/j.1365-246X.1994.tb00921.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The pole-pole 3-D DC-resistivity inverse problem is solved by converting the inverse problem into an objective-function optimization problem, using the adjoint equation to compute the gradient of the objective function, and using a conjugate-gradient minimization. Two examples of the application of the resulting inversion algorithm are given. First, a large synthetic data set is inverted, and second, the inversion algorithm is used to invert E-SCAN field data of relevance to mineral exploration.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 13 条
[1]  
Acton F.S., 1970, NUMERICAL METHODS WO
[2]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[3]  
DAZEVEDO EF, 1991, MATI ITERATIVE SPARS
[4]   RESISTIVITY MODELING FOR ARBITRARILY SHAPED 3-DIMENSIONAL STRUCTURES [J].
DEY, A ;
MORRISON, HF .
GEOPHYSICS, 1979, 44 (04) :753-780
[5]  
Gill P. E., 1981, PRACTICAL OPTIMIZATI
[6]  
Hestenes M.R., 1980, CONJUGATE DIRECTION
[7]   INVERSION OF 3-D DC RESISTIVITY DATA USING AN APPROXIMATE INVERSE MAPPING [J].
LI, YG ;
OLDENBURG, DW .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1994, 116 (03) :527-537
[8]  
NAYLOR AW, 1982, LINEAR OPERATOR THEO
[9]   INVERSION OF POLE-POLE DATA FOR 3-D RESISTIVITY STRUCTURE BENEATH ARRAYS OF ELECTRODES [J].
PARK, SK ;
VAN, GP .
GEOPHYSICS, 1991, 56 (07) :951-960
[10]  
POLYAK E, 1969, REV FR INR RECH OPER, V16, P35