AFR1 ACTS IN CONJUNCTION WITH THE ALPHA-FACTOR RECEPTOR TO PROMOTE MORPHOGENESIS AND ADAPTATION

被引:40
作者
KONOPKA, JB
机构
[1] Department of Microbiology, State University of New York, Stony Brook
关键词
D O I
10.1128/MCB.13.11.6876
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mating pheromone receptors activate a G-protein signaling pathway that induces changes in transcription, cell division, and morphogenesis needed for the conjugation of Saccharomyces cerevisiae. The C terminus of the alpha-factor pheromone receptor functions in two complex processes, adaptation and morphogenesis. Adaptation to alpha-factor may occur through receptor desensitization, and alpha-factor-induced morphogenesis forms the conjugation bridge between mating cells. A plasmid overexpression strategy was used to isolate a new gene, AFR1, which acts together with the receptor C terminus to promote adaptation. The expression of AFR1 was highly induced by alpha-factor. Unexpectedly, cells lacking AFR1 showed a defect in alpha-factor-stimulated morphogenesis that was similar to the morphogenesis defect observed in cells producing C-terminally truncated alpha-factor receptors. In contrast, AFR1 overexpression resulted in longer projections of morphogenesis, which suggests that this gene may directly stimulate morphogenesis. These results indicate that AFR1 encodes a developmentally regulated function that coordinates both the regulation of receptor signaling and the induction of morphogenesis during conjugation.
引用
收藏
页码:6876 / 6888
页数:13
相关论文
共 73 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
BABA M, 1989, J CELL SCI, V94, P207
[3]   CONSTITUTIVE MUTANTS IN THE YEAST PHEROMONE RESPONSE - ORDERED FUNCTION OF THE GENE-PRODUCTS [J].
BLINDER, D ;
BOUVIER, S ;
JENNESS, DD .
CELL, 1989, 56 (03) :479-486
[4]   THE YEAST ALPHA-FACTOR RECEPTOR - STRUCTURAL-PROPERTIES DEDUCED FROM THE SEQUENCE OF THE STE2 GENE [J].
BURKHOLDER, AC ;
HARTWELL, LH .
NUCLEIC ACIDS RESEARCH, 1985, 13 (23) :8463-8475
[5]  
BYERS B, 1981, MOL BIOL YEAST SACCH, V1, P59
[6]   ORDER OF ACTION OF COMPONENTS IN THE YEAST PHEROMONE RESPONSE PATHWAY REVEALED WITH A DOMINANT ALLELE OF THE STE11-KINASE AND THE MULTIPLE PHOSPHORYLATION OF THE STE7-KINASE [J].
CAIRNS, BR ;
RAMER, SW ;
KORNBERG, RD .
GENES & DEVELOPMENT, 1992, 6 (07) :1305-1318
[7]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154
[8]   PHYSIOLOGICAL CHARACTERIZATION OF SACCHAROMYCES-CEREVISIAE MUTANTS SUPER-SENSITIVE TO G1 ARREST BY A-FACTOR AND ALPHA-FACTOR PHEROMONES [J].
CHAN, RK ;
OTTE, CA .
MOLECULAR AND CELLULAR BIOLOGY, 1982, 2 (01) :21-29
[9]   IDENTIFICATION OF A GENE NECESSARY FOR CELL-CYCLE ARREST BY A NEGATIVE GROWTH-FACTOR OF YEAST - FAR1 IS AN INHIBITOR OF A G1 CYCLIN, CLN2 [J].
CHANG, F ;
HERSKOWITZ, I .
CELL, 1990, 63 (05) :999-1011
[10]   GENETIC-CONTROL OF BUD SITE SELECTION IN YEAST BY A SET OF GENE-PRODUCTS THAT CONSTITUTE A MORPHOGENETIC PATHWAY [J].
CHANT, J ;
HERSKOWITZ, I .
CELL, 1991, 65 (07) :1203-1212