GENERAL CHI-SQUARE GOODNESS-OF-FIT TESTS WITH DATA-DEPENDENT CELLS

被引:27
作者
POLLARD, D
机构
[1] Dept. of Statistics, Yale University, New Haven, 06520, CT, Yale Station
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1979年 / 50卷 / 03期
关键词
D O I
10.1007/BF00534153
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The goodness-of-fit of a parametric model for non-categorical data can be tested using the x2 statistic calculated after grouping the data into a finite number of disjoint cells. Work of Watson, Čebyšev, Moore and others shows that the classical limit distributions still hold even for certain methods of grouping that depend on the data themselves. These results are generalised to cover a much wider class of methods of grouping; the parameters can be estimated from either the grouped or the ungrouped data. The proofs use a Central Limit Theorem for Empirical Measures due to Dudley. The grouping cells are allowed to come from any Donsker class for the underlying sampling distribution. © 1979 Springer-Verlag.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 24 条
[1]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[2]   NEW PROOF OF PEARSON-FISHER THEOREM [J].
BIRCH, MW .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02) :817-&
[3]  
Breiman L., 1968, PROBABILITY
[4]  
CEBYSEV DM, 1971, THEOR PROBAB APPL, V16, P1
[5]   THE USE OF MAXIMUM LIKELIHOOD ESTIMATES IN X2 TESTS FOR GOODNESS OF FIT [J].
CHERNOFF, H ;
LEHMANN, EL .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (03) :579-586
[6]   LARGE-SAMPLE THEORY - PARAMETRIC CASE [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (01) :1-22
[7]  
CRAMER H, 1946, MATH METHODS STATIST
[8]   I-DIVERGENCE GEOMETRY OF PROBABILITY DISTRIBUTIONS AND MINIMIZATION PROBLEMS [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1975, 3 (01) :146-158
[9]  
DUDLEY R, UNPUBLISHED
[10]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929