VORONOI DIAGRAMS OF MOVING POINTS IN THE PLANE

被引:32
作者
Fu, Jyh-Jong [1 ]
Lee, R. C. T. [1 ]
机构
[1] Natl Tsing Hua Univ, Inst Comp Sci, Hsinchu 30043, Taiwan
关键词
D O I
10.1142/S0218195991000037
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider the dynamic Voronoi diagram problem. In this problem, a given set of planar points are moving and our objective is to find the Voronoi diagram of these moving points at any time t. A preprocessing algorithm and a query processing algorithm are presented in this paper. Assume that the points are in k-motion, and it takes O(k) time to find roots of a polynomial with degree O(k). The preprocessing algorithm takes O(k(2)n(3) log n.2(O(alpha(n)5k+l))) time to process moving functions of given points, and uses O(k(2)n(3)2(O(alpha(n)5k+1))) space to store the preprocessing result where alpha(n) is the functional inverse of Ackermann's function. The query processing algorithm is designed to report the Voronoi diagram of these points for a query time t. It takes O(a) time which is optimal.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 20 条
[1]  
AGARWAL P, 1987, 332 NEW YORK U COMP
[2]  
Atallah M. J., 1983, 24th Annual Symposium on Foundations of Computer Science, P92, DOI 10.1109/SFCS.1983.13
[3]  
BENTLEY JL, 1980, IEEE T COMPUT, V29, P571, DOI 10.1109/TC.1980.1675628
[4]   OPTIMAL EXPECTED-TIME ALGORITHMS FOR CLOSEST POINT PROBLEMS [J].
BENTLEY, JL ;
WEIDE, BW ;
YAO, AC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (04) :563-580
[5]   FILTERING SEARCH - A NEW APPROACH TO QUERY-ANSWERING [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1986, 15 (03) :703-724
[6]  
Edelsbrunner H., 1980, 50 IIG TU GRAZ
[7]   NONLINEARITY OF DAVENPORT SCHINZEL SEQUENCES AND OF GENERALIZED PATH COMPRESSION SCHEMES [J].
HART, S ;
SHARIR, M .
COMBINATORICA, 1986, 6 (02) :151-177
[8]   FINDING THE UPPER ENVELOPE OF N LINE SEGMENTS IN O(N LOG N) TIME [J].
HERSHBERGER, J .
INFORMATION PROCESSING LETTERS, 1989, 33 (04) :169-174
[9]  
Imai H., 1990, P INT COMPUTER S TAI, P600
[10]  
IMAI K, 1989, PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, P266