POLYGON NESTING AND ROBUSTNESS

被引:9
作者
BAJAJ, CL
DEY, T
机构
[1] Department of Computer Science, Purdue University, West Lafayette
基金
美国国家科学基金会;
关键词
analysis of algorithms; Computational geometry; computer graphics;
D O I
10.1016/0020-0190(90)90169-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the polygon nesting problem for a set of m simple, nonintersecting, planar polygons with n vertices and N notches. We give an O(n + (m + N)log(m + N)) timealgorithm which uses exact arithmetic and give an O(n(log n + m + N)) time, robust algorithm which uses floating point arithmetic. © 1990.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 15 条
[1]  
BAJAJ C, 1989, MATH SURFACES, V3
[2]  
BAJAJ CL, 1989, LECT NOTES COMPUT SC, V405, P267
[3]   CONVEX PARTITIONS OF POLYHEDRA - A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :488-507
[4]  
DOBKIN D, 1988, 4TH P ACM S COMP GEO, P93
[5]   TOPOLOGICALLY SWEEPING AN ARRANGEMENT [J].
EDELSBRUNNER, H ;
GUIBAS, LJ .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1989, 38 (01) :165-194
[6]  
EDELSBRUNNER H, 1988, 4TH P ACM S COMP GEO, P118
[7]  
FORTUNE S, 1989, UNPUB STABLE MAINTEN
[8]  
Greene D. H., 1986, 27th Annual Symposium on Foundations of Computer Science (Cat. No.86CH2354-9), P143, DOI 10.1109/SFCS.1986.19
[9]  
HOFFMANN C, 1987, 87875 CORN U DEP COM
[10]  
KARASICK M, 1988, THESIS MCGILL U MONT