Geometry optimization for Thomas-Fermi type theories for solids

被引:5
作者
Blanc, X
Le Bris, C
机构
[1] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Champs Sur Marne, Marne La Vallee, France
[2] Ecole Normale Super, F-75230 Paris 05, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 06期
关键词
D O I
10.1016/S0764-4442(00)80060-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study here the problem of geometry optimization for a crystal in the TFW solid-state setting, i.e the problem of minimizing the TFW energy with respect to the periodic lattice defining the positions of the nuclei. We show the existence of such a minimum. One step of our work consists in derivating TFW-type models for polymers and thin films. (C) 1999 Academie des Sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:551 / 556
页数:6
相关论文
共 12 条
[1]  
Ashcroft N.D.M., 1976, SOLID STATE PHYS
[2]  
BLANC X, 99173 CERMICS
[3]  
BLANC X, IN PRESS ADV DIFFER
[4]  
Catto I, 1996, CR ACAD SCI I-MATH, V322, P357
[5]  
CATTO I, 1998, OXFORD MATH MONOGR
[6]  
CATTO I, 1992, COMMUN PARTIAL DIFFE, V17
[7]  
CATTO I, 1993, COMMUN PARTIAL DIFFE, V18
[8]  
Engel P., 1942, GEOMETRIC CRYSTALLOG
[9]   THOMAS-FERMI THEORY OF ATOMS, MOLECULES AND SOLIDS [J].
LIEB, EH ;
SIMON, B .
ADVANCES IN MATHEMATICS, 1977, 23 (01) :22-116
[10]   THOMAS-FERMI AND RELATED THEORIES OF ATOMS AND MOLECULES [J].
LIEB, EH .
REVIEWS OF MODERN PHYSICS, 1981, 53 (04) :603-641