AN ARITHMETIC CHARACTERIZATION OF THE CONJUGATE QUADRATURE FILTERS ASSOCIATED TO ORTHONORMAL WAVELET BASES

被引:16
作者
COHEN, A [1 ]
SUN, QY [1 ]
机构
[1] ZHEJIANG UNIV,CTR MATH SCI,ZHEJIANG 310027,PEOPLES R CHINA
关键词
WAVELET BASES; CONJUGATE QUADRATURE FILTERS; POLLENS CONJECTURE;
D O I
10.1137/0524078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h = {h(n)} be a sequence of complex numbers with finite length such that H(omega) = SIGMA h(n) exp(-2piinomega) satisfies the identity \H(omega)\2 + \H(omega + 1/2)\2 = 1 and H(0) = 1, i.e., h is the impulse response of a conjugate quadrature filter. In this paper, we give a characterization, by the real roots of H(omega), of the sequences h that generate an orthonormal wavelet basis in the sense of the theory developed by Meyer and Daubechies. This result leads to a counterexample to Pollen's conjecture.
引用
收藏
页码:1355 / 1360
页数:6
相关论文
共 8 条
[1]  
CHUI CK, 1990, CAT219 TEX A M U COL
[2]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[3]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR CONSTRUCTING ORTHONORMAL WAVELET BASES [J].
LAWTON, WM .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (01) :57-61
[5]   TIGHT FRAMES OF COMPACTLY SUPPORTED AFFINE WAVELETS [J].
LAWTON, WM .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (08) :1898-1901
[7]  
MEYER Y, 1990, ONDELETTES
[8]  
POLLEN D, 1989, SCALING TILES