ISOPERIMETRIC-INEQUALITIES AND FRACTIONAL SET SYSTEMS

被引:17
作者
BOLLOBAS, B [1 ]
LEADER, I [1 ]
机构
[1] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
D O I
10.1016/0097-3165(91)90022-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Ω be the probability space of all 0-1 sequences of length n, with P((ai)1n) = pΣa(1 - p)n - Σa. For a set A ⊂ Ω and a natural number t, let A(t) be the set of sequences with Hamming distance at most t from A. The main aim of this paper is to prove that if A is a down-set and P(A)≥σkr=0 ( n r) pr (1 - p) n-r then P(A(t))≥σk+1r=0 ( n r) pr (1 - p)n-r. This result generalises Harper's theorem on the isoperimetric inequality in the cube. © 1991.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 9 条
[1]  
[Anonymous], 1967, TOHOKU MATH J 2 SERI, DOI DOI 10.2748/TMJ/1178243286
[2]   THE CHROMATIC NUMBER OF RANDOM GRAPHS [J].
BOLLOBAS, B .
COMBINATORICA, 1988, 8 (01) :49-55
[3]   COMPRESSIONS AND ISOPERIMETRIC-INEQUALITIES [J].
BOLLOBAS, B ;
LEADER, I .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 56 (01) :47-62
[4]  
BOLLOBAS B, 1985, RANDOM GRAPHS, pR16
[5]  
BOLLOBAS B, IN PRESS RANDOM GRAP
[6]   A SHORT PROOF FOR A THEOREM OF HARPER ABOUT HAMMING-SPHERES [J].
FRANKL, P ;
FUREDI, Z .
DISCRETE MATHEMATICS, 1981, 34 (03) :311-313
[7]  
Harper L. H., 1966, J COMBIN THEORY, V1, P385, DOI DOI 10.1016/S0021-9800(66)80059-5
[8]  
Katona G.O.H., 1977, STUD SCI MATH HUNG 1, P131
[9]   DISCRETE ISOPERIMETRIC PROBLEMS [J].
WANG, DL ;
WANG, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :860-870