SPATIAL PATTERNS FOR AN INTERACTION-DIFFUSION EQUATION IN MORPHOGENESIS

被引:14
作者
MIMURA, M [1 ]
NISHIURA, Y [1 ]
机构
[1] KYOTO SANGYO UNIV, DEPT COMP SCI, KYOTO, JAPAN
关键词
Bifurcation; Morphogenesis; Non-linear diffusion; Spatial patterns;
D O I
10.1007/BF00275727
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A certain interaction-diffusion equation occurring in morphogenesis is considered. This equation is proposed by Gierer and Meinhardt, which is introduced by Child's gradient theory and Turing's idea about diffusion driven instability. It is shown that slightly asymmetric gradients in the tissue produce stable striking patterns depending on its asymmetry, starting from uniform distribution of morphogens. The tool is the perturbed bifurcation theory. Moreover, from a mathematical point of view, the global existence of steady state solutions with respect to some parameters is discussed. © 1979 Springer-Verlag.
引用
收藏
页码:243 / 263
页数:21
相关论文
共 15 条
[1]  
AUCHMUTY JFG, 1975, B MATH BIOL, V37, P323, DOI 10.1007/BF02459519
[2]   POSITIVELY INVARIANT REGIONS FOR SYSTEMS OF NONLINEAR DIFFUSION EQUATIONS [J].
CHUEH, KN ;
CONLEY, CC ;
SMOLLER, JA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (02) :373-392
[3]   LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NON-LINEAR REACTION-DIFFUSION EQUATIONS [J].
CONWAY, E ;
HOFF, D ;
SMOLLER, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (01) :1-16
[4]  
Crandall M.G., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[5]  
DIEUDONNE J, 1960, F MODERN ANAL
[6]  
Friedman A., 1964, PARTIAL DIFFERENTIAL
[7]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[8]   BIFURCATION ANALYSIS OF PATTERN FORMATION IN A DIFFUSION GOVERNED MORPHONETIC FIELD [J].
GRANERO, MI ;
PORATI, A ;
ZANACCA, D .
JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (01) :21-27
[9]  
KIELHOFER H, 1974, ARCH RATION MECH AN, V57, P150, DOI 10.1007/BF00248417
[10]  
MIMURA M, UNPUBLISHED