GENERAL RECURRENCE RELATION FOR DIVIDED DIFFERENCES AND THE GENERAL NEWTON-INTERPOLATION-ALGORITHM WITH APPLICATIONS TO TRIGONOMETRIC INTERPOLATION

被引:23
作者
MUHLBACH, G
机构
[1] Institut für Praktische Mathematik der Technischen Universität, Hannover, D-3000
关键词
Subject Classifications: AMS(MOS); 65D05; 41A05; 42A12;
D O I
10.1007/BF01401043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note an ultimate generalization of Newton's classical interpolation formula is given. More precisely, we will establish the most general linear form of a Newton-like interpolation formula and a general recurrence relation for divided differences which are applicable whenever a function is to be interpolated by means of linear combinations of functions forming a Čebyšev-system such that at least one of its subsystems is again a Čebyšev-system. The theory is applied to trigonometric interpolation yielding a new algorithm which computes the interpolating trigonometric polynomial of smallest degree for any distribution of the knots by recurrence. A numerical example is given. © 1979 Springer-Verlag.
引用
收藏
页码:393 / 408
页数:16
相关论文
共 9 条
[1]   GENERALIZATION OF NEWTON-INTERPOLATION AND NEVILLE-AITKEN-ALGORITHM AND THEIR APPLICATION TO RICHARDSON-EXTRAPOLATION [J].
ENGELS, H .
COMPUTING, 1972, 10 (04) :375-389
[2]  
Gelfond A.O., 1958, DIFFERENZENRECHNUNG
[3]  
Householder AS, 1953, PRINCIPLES NUMERICAL
[4]  
Karlin S., 1966, J AM STATIS ASS
[5]  
Muhlbach G., 1973, Journal of Approximation Theory, V9, P165, DOI 10.1016/0021-9045(73)90104-4
[6]   NEWTON AND HERMITE INTERPOLATION WITH CEBYSEV SYSTEMS [J].
MUHLBACH, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (09) :541-550
[7]   GENERAL NEVILLE-AITKEN-ALGORITHM AND SOME APPLICATIONS [J].
MUHLBACH, G .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :97-110
[8]  
MUHLBACH G, IN PRESS
[9]  
SALZER HE, 1964, NUMER MATH, V6, P68