FERMION SIGN PROBLEM - DECOUPLING TRANSFORMATION AND SIMULATION ALGORITHM

被引:24
作者
BATROUNI, GG
DEFORCRAND, P
机构
[1] SWISS FED INST TECHNOL,IPS,CH-8092 ZURICH,SWITZERLAND
[2] UNIV MINNESOTA,INST THEORET PHYS,MINNEAPOLIS,MN 55455
来源
PHYSICAL REVIEW B | 1993年 / 48卷 / 01期
关键词
D O I
10.1103/PhysRevB.48.589
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss the fermion sign problem and, by examining a very general Hubbard-Stratonovich transformation, argue that the sign problem cannot be solved with such methods. We propose a different kind of transformation which, while not solving the sign problem, shows more detailed information about the system. With our transformation it is trivial to tell which auxiliary field configurations give a positive sign and which give a negative sign. We then discuss briefly various properties of this transformation and construct an algorithm which with one simulation gives results for a whole range of particle densities and Hubbard U values, positive and negative. Our approach is in excellent agreement with exact calculations.
引用
收藏
页码:589 / 592
页数:4
相关论文
共 11 条
[1]  
ASSAAD FF, 1990, QUANTUM SIMULATIONS, P1
[2]   ANOMALOUS DECOUPLINGS AND THE FERMION SIGN PROBLEM [J].
BATROUNI, GG ;
SCALETTAR, RT .
PHYSICAL REVIEW B, 1990, 42 (04) :2282-2289
[3]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[4]   DETERMINANT MONTE-CARLO FOR THE HUBBARD-MODEL WITH ARBITRARILY GAUGED AUXILIARY FIELDS [J].
CHEN, L ;
TREMBLAY, AMS .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (5-6) :547-560
[5]   TWO-DIMENSIONAL HUBBARD-MODEL - NUMERICAL-SIMULATION STUDY [J].
HIRSCH, JE .
PHYSICAL REVIEW B, 1985, 31 (07) :4403-4419
[6]   SIGN PROBLEM IN THE NUMERICAL-SIMULATION OF MANY-ELECTRON SYSTEMS [J].
LOH, EY ;
GUBERNATIS, JE ;
SCALETTAR, RT ;
WHITE, SR ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW B, 1990, 41 (13) :9301-9307
[7]  
Sorella S., 1988, International Journal of Modern Physics B, V2, P993, DOI 10.1142/S0217979288000822
[8]   A NOVEL TECHNIQUE FOR THE SIMULATION OF INTERACTING FERMION SYSTEMS [J].
SORELLA, S ;
BARONI, S ;
CAR, R ;
PARRINELLO, M .
EUROPHYSICS LETTERS, 1989, 8 (07) :663-668
[9]   GENERALIZED TROTTERS FORMULA AND SYSTEMATIC APPROXIMANTS OF EXPONENTIAL OPERATORS AND INNER DERIVATIONS WITH APPLICATIONS TO MANY-BODY PROBLEMS [J].
SUZUKI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 51 (02) :183-190
[10]  
Trotter H. F., 1959, P AM MATH SOC, V10, P545, DOI [10.1090/S0002-9939-1959-0108732-6, DOI 10.1090/S0002-9939-1959-0108732-6]