BOUNDEDNESS OF SOLUTIONS OF PREDATOR-PREY SYSTEMS

被引:15
作者
BRAUER, F
机构
[1] Department of Mathematics, University of Wisconsin, Madison
关键词
D O I
10.1016/0040-5809(79)90041-8
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Under minimal assumptions, we establish boundedness of every solution of a predator-prey system with constant rate harvesting or stocking of either or both species. This leads to an extension of the classical Kolmogorov theorem on asymptotic behavior of solutions of predator-prey systems. © 1979.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 11 条
[1]   DYNAMICS OF 2 INTERACTING POPULATIONS [J].
ALBRECHT, F ;
GATZKE, H ;
HADDAD, A ;
WAX, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 46 (03) :658-670
[2]   STABILIZATION AND DESTABILIZATION OF PREDATOR-PREY SYSTEMS UNDER HARVESTING AND NUTRIENT ENRICHMENT [J].
BRAUER, F ;
SOUDACK, AC ;
JAROSCH, HS .
INTERNATIONAL JOURNAL OF CONTROL, 1976, 23 (04) :553-573
[3]   THEORY OF PREY-PREDATOR OSCILLATIONS [J].
BULMER, MG .
THEORETICAL POPULATION BIOLOGY, 1976, 9 (02) :137-150
[4]  
Coddington EA., 1955, THEORY ORDINARY DIFF
[5]  
HUREWICZ W, 1958, LECTURES ORDINARY DI
[6]  
Kolmogorov A, 1936, GIORNALE I ITALIANO, V7, P74
[7]   QUALITATIVE-ANALYSIS OF INSECT OUTBREAK SYSTEMS - SPRUCE BUDWORM AND FOREST [J].
LUDWIG, D ;
JONES, DD ;
HOLLING, CS .
JOURNAL OF ANIMAL ECOLOGY, 1978, 47 (01) :315-332
[8]  
May R.M., 1973, STABILITY COMPLEXITY
[9]  
May RM., 1976, THEORETICAL ECOLOGY
[10]   DYNAMICS OF NUTRIENT LIMITATION OF PHYTOPLANKTON ALGAE - MODEL RECONSIDERED [J].
OBRIEN, WJ .
ECOLOGY, 1974, 55 (01) :135-141