ANALYTICAL 2ND DERIVATIVES OF 2 ELECTRON INTEGRALS OVER S AND P CARTESIAN GAUSSIANS

被引:14
作者
SCHLEGEL, HB
机构
关键词
D O I
10.1063/1.456416
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:5630 / 5634
页数:5
相关论文
共 13 条
[1]   EVALUATION OF MOLECULAR INTEGRALS OVER GAUSSIAN BASIS FUNCTIONS [J].
DUPUIS, M ;
RYS, J ;
KING, HF .
JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (01) :111-116
[2]  
DUPUIS M, 1983, J COMPUT CHEM, V4, P154
[3]  
FRISCH MJ, 1986, GAUSSIAN 86
[4]   A METHOD FOR 2-ELECTRON GAUSSIAN INTEGRAL AND INTEGRAL DERIVATIVE EVALUATION USING RECURRENCE RELATIONS [J].
HEADGORDON, M ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (09) :5777-5786
[5]   INTEGRAL EVALUATION ALGORITHMS AND THEIR IMPLEMENTATION [J].
HEGARTY, D ;
VANDERVELDE, G .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1983, 23 (04) :1135-1153
[6]   NUMERICAL-INTEGRATION USING RYS POLYNOMIALS [J].
KING, HF ;
DUPUIS, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 21 (02) :144-165
[7]  
KOMORNICKI A, 1988, QCPE B, V8, P9
[8]   EFFICIENT RECURSIVE COMPUTATION OF MOLECULAR INTEGRALS OVER CARTESIAN GAUSSIAN FUNCTIONS [J].
OBARA, S ;
SAIKA, A .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (07) :3963-3974
[9]   COMPUTATION OF ELECTRON REPULSION INTEGRALS INVOLVING CONTRACTED GAUSSIAN BASIS FUNCTIONS [J].
POPLE, JA ;
HEHRE, WJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 27 (02) :161-168
[10]   1ST AND 2ND DERIVATIVES OF 2 ELECTRON INTEGRALS OVER CARTESIAN GAUSSIANS USING RYS POLYNOMIALS [J].
SCHLEGEL, HB ;
BINKLEY, JS ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (05) :1976-1981