NONCOMMUTATIVE PROJECTIVE SCHEMES

被引:320
作者
ARTIN, M [1 ]
ZHANG, JJ [1 ]
机构
[1] UNIV WASHINGTON,DEPT MATH,SEATTLE,WA 98195
关键词
D O I
10.1006/aima.1994.1087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An analogue of the concept of projective scheme is defined for noncommutative N-graded algebras using the quotient category C of graded right A-modules module its full subcategory of torsion modules. We define proj A = (C, A, s), where A is the object corresponding to the module A(A), and s is the autoequivalence defined by the shift of degrees. The triples equivalent to proj A for a right noetherian graded algebra A are characterized in terms of a condition chi on extensions. (C) 1994 Academic Press, Inc.
引用
收藏
页码:228 / 287
页数:60
相关论文
共 30 条
[1]  
Anderson F. W., 1992, GRAD TEXTS MATH, V13
[2]   MODULES OVER REGULAR ALGEBRAS OF DIMENSION-3 [J].
ARTIN, M ;
TATE, J ;
VANDENBERGH, M .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :335-388
[3]  
ARTIN M, 1990, J ALGEBRA, V188, P249
[4]  
Artin M., 1992, AZUMAYA ALGEBRAS ACT, P1
[5]  
ARTIN M, 1987, ADV MATH, V66, P172
[6]  
Gabriel P., 1962, B SOC MATH FR, V90, P323
[7]  
GROTHENDIECK A, 1961, I HAUTES ETUDES SCI, V0008
[8]  
GROTHENDIECK A, 1963, I HAUTES ETUDES SCI, V11
[9]  
Hartshorne R., 1977, SPRINGER GRADUATE TE
[10]   SOME PROPERTIES OF NONCOMMUTATIVE REGULAR GRADED RINGS [J].
LEVASSEUR, T .
GLASGOW MATHEMATICAL JOURNAL, 1992, 34 :277-300