EFFECT OF DIETARY ANTIOXIDANT COMBINATIONS IN HUMANS - PROTECTION OF LDL BY VITAMIN-E BUT NOT BY BETA-CAROTENE

被引:361
作者
REAVEN, PD
KHOUW, A
BELTZ, WF
PARTHASARATHY, S
WITZTUM, JL
机构
[1] Div. of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA
[2] Department of Medicine 0682, University of California, San Diego, San Diego, CA 92093-0682
来源
ARTERIOSCLEROSIS AND THROMBOSIS | 1993年 / 13卷 / 04期
关键词
ATHEROSCLEROSIS; ANTIOXIDANTS; VITAMIN-E; BETA-CAROTENE; VITAMIN-C; LDL; HDL; LIPID OXIDATION; CONJUGATED DIENES; MACROPHAGES;
D O I
10.1161/01.ATV.13.4.590
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Experimental and epidemiological evidence supports the hypothesis that oxidation of low density lipoprotein (LDL) appears to be important in mediating the atherogenicity of LDL. To test this hypothesis in humans, it will be necessary to perform intervention studies in large populations. We performed two studies to assess the effectiveness of supplementation with beta-carotene and vitamin E, used alone and in combination with each other, and with vitamin C, to protect LDL from oxidation. In phase 1, after a placebo period, eight subjects were given beta-carotene (60 mg/day) for 3 months, then beta-carotene plus vitamin E (1,600 mg/day) for another 3 months, and then beta-carotene plus vitamin E plus vitamin C (2 g/day) for 3 months. During phase 2, beta-carotene and vitamin C were discontinued, and subjects took only vitamin E for 5 months. During each period, LDL samples were isolated, and measurements of susceptibility to oxidation were performed. Beta-carotene levels in LDL increased nearly 20-fold, but LDL susceptibility to oxidation did not change. Addition of vitamin E increased LDL vitamin E levels nearly 2.5-fold, and this decreased LDL oxidation 30-40%. During the vitamin C supplementation period, plasma levels of beta-carotene and vitamin E rose, but only beta-carotene increased in LDL. However, the susceptibility of LDL to oxidation in this period was not decreased further. During phase 2, when subjects took only vitamin E, LDL susceptibility to oxidation was decreased by 50% as measured by thiobarbituric acid-reactive substances, conjugated dienes, and lipid peroxide formation as well as by macrophage degradation. Thus, long-term supplementation with large doses of vitamin E alone, but not beta-carotene, conferred increased protection to LDL in in vitro assays of oxidation. These data should be useful in planning therapeutic strategies to test the antioxidant hypothesis in humans.
引用
收藏
页码:590 / 600
页数:11
相关论文
共 56 条
[1]  
BESSEY OA, 1947, J BIOL CHEM, V168, P197
[2]   DETERMINATION OF INDIVIDUAL CAROTENOIDS IN HUMAN-PLASMA BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY [J].
BIERI, JG ;
BROWN, ED ;
SMITH, JC .
JOURNAL OF LIQUID CHROMATOGRAPHY, 1985, 8 (03) :473-484
[3]   THE ANTIOXIDANT BUTYLATED HYDROXYTOLUENE PROTECTS AGAINST ATHEROSCLEROSIS [J].
BJORKHEM, I ;
HENRIKSSONFREYSCHUSS, A ;
BREUER, O ;
DICZFALUSY, U ;
BERGLUND, L ;
HENRIKSSON, P .
ARTERIOSCLEROSIS AND THROMBOSIS, 1991, 11 (01) :15-22
[4]  
BOYD HC, 1989, AM J PATHOL, V135, P815
[5]   BETA-CAROTENE - AN UNUSUAL TYPE OF LIPID ANTIOXIDANT [J].
BURTON, GW ;
INGOLD, KU .
SCIENCE, 1984, 224 (4649) :569-573
[6]  
CAMEJO G, 1991, J LIPID RES, V32, P1983
[8]   MONOCYTES AND NEUTROPHILS OXIDIZE LOW-DENSITY LIPOPROTEIN MAKING IT CYTO-TOXIC [J].
CATHCART, MK ;
MOREL, DW ;
CHISOLM, GM .
JOURNAL OF LEUKOCYTE BIOLOGY, 1985, 38 (02) :341-350
[9]  
CHOW CK, 1991, FREE RADICAL BIO MED, V11, P215
[10]   MINIMALLY MODIFIED LOW-DENSITY-LIPOPROTEIN INDUCES MONOCYTE CHEMOTACTIC PROTEIN-1 IN HUMAN ENDOTHELIAL-CELLS AND SMOOTH-MUSCLE CELLS [J].
CUSHING, SD ;
BERLINER, JA ;
VALENTE, AJ ;
TERRITO, MC ;
NAVAB, M ;
PARHAMI, F ;
GERRITY, R ;
SCHWARTZ, CJ ;
FOGELMAN, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (13) :5134-5138