AN ITERATIVE METHOD FOR MATRIX SPECTRAL FACTORIZATION

被引:7
作者
HARRIS, TJ [1 ]
DAVIS, JH [1 ]
机构
[1] QUEENS UNIV,DEPT MATH & STAT,KINGSTON K7L 3N6,ONTARIO,CANADA
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1992年 / 13卷 / 02期
关键词
MULTIVARIABLE SPECTRAL FACTORIZATION; RICATTI EQUATION; CONJUGATE PERIODIC FUNCTION; DISCRETE HILBERT TRANSFORM; OPTIMAL CONTROL; ATTENUATION FACTORS;
D O I
10.1137/0913029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computationally efficient algorithm is implemented to factorize a multivariate spectrum at a discrete number of frequencies. This method uses an iterative causal projection procedure to factorize the spectrum. The causal projection is computed using fast Fourier transforms.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 26 条
[1]   RECURSIVE ALGORITHM FOR SPECTRAL FACTORIZATION [J].
ANDERSON, BD ;
HITZ, KL ;
DIEM, ND .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, CA21 (06) :742-750
[2]   AN ALGEBRAIC SOLUTION TO SPECTRAL FACTORIZATION PROBLEM [J].
ANDERSON, BD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (04) :410-&
[3]  
[Anonymous], MULTICHANNEL TIME SE
[4]  
BRASS H, 1982, NUMERICAL METHODS AP, P43
[5]   ON POLYNOMIAL MATRIX SPECTRAL FACTORIZATION BY SYMMETRIC EXTRACTION [J].
CALLIER, FM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (05) :453-464
[6]   NUMERICAL EVALUATION OF INTEGRALS OF PERIODIC FUNCTIONS WITH CAUCHY AND POISSON TYPE KERNELS [J].
CHAWLA, MM ;
RAMAKRISHNAN, TR .
NUMERISCHE MATHEMATIK, 1974, 22 (04) :317-323
[7]   SPECTRAL FACTORIZATION BY OPTIMAL GAIN ITERATION. [J].
Davis, J.H. ;
Dickinson, R.G. .
SIAM Journal on Applied Mathematics, 1983, 43 (02) :289-301
[8]   ESTIMATES IN TRIGONOMETRIC INTERPOLATION AND IN DETERMINATION OF CONJUGATE FUNCTIONS [J].
GAIER, D .
COMPUTING, 1974, 12 (02) :145-148
[9]  
GAUTSCHI W, 1972, NUMER MATH, V18, P373
[10]  
GEORGIOU TT, 1983, SYSTEMS CONTROL LETT, V10, P123