CLASSICAL-SOLUTIONS IN 3-DIMENSIONAL COSMOLOGICAL GRAVITY

被引:28
作者
CLEMENT, G [1 ]
机构
[1] UNIV NICE SOPHIA ANTIPOLIS,INST NON LINEAIRE NICE,FAC SCI,F-06108 NICE 2,FRANCE
来源
PHYSICAL REVIEW D | 1994年 / 49卷 / 10期
关键词
D O I
10.1103/PhysRevD.49.5131
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solutions, depending on only one variable, to three-dimensional cosmological gravity are shown to be geodesics of an abstract three-dimensional Minkowski space. These geodesics are timelike, lightlike, or spacelike for positive, zero, or negative values of the cosmological constant. The singularity structure of the solutions depends on the position of the associated geodesics relative to the light cone in solution space. The extension to the case of three-dimensional cosmological gravity with field-theoretical sources is briefly discussed.
引用
收藏
页码:5131 / 5134
页数:4
相关论文
共 16 条
[1]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[2]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525
[3]   OBSERVABLES, GAUGE-INVARIANCE, AND TIME IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY [J].
CARLIP, S .
PHYSICAL REVIEW D, 1990, 42 (08) :2647-2654
[4]  
CARLIP S, GRQC9311007 REP
[5]   STATIONARY SOLUTIONS IN 3-DIMENSIONAL GENERAL-RELATIVITY [J].
CLEMENT, G .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1985, 24 (03) :267-275
[6]   CLASSICAL-SOLUTIONS IN 3-DIMENSIONAL EINSTEIN-MAXWELL COSMOLOGICAL GRAVITY [J].
CLEMENT, G .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (05) :L49-L54
[7]   STATIONARY ROTATIONALLY SYMMETRICAL SOLUTIONS IN TOPOLOGICALLY MASSIVE GRAVITY [J].
CLEMENT, G .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (12) :2615-2633
[8]  
Clement G, UNPUB
[9]   SELF-DUAL MAXWELL-CHERN-SIMONS VORTICES IN THE BACKGROUND OF GRAVITY [J].
COMTET, A ;
KHARE, A .
PHYSICS LETTERS B, 1992, 278 (03) :236-239
[10]   3-DIMENSIONAL EINSTEIN GRAVITY - DYNAMICS OF FLAT SPACE [J].
DESER, S ;
JACKIW, R ;
THOOFT, G .
ANNALS OF PHYSICS, 1984, 152 (01) :220-235