OPTICAL COMPUTATION USING RESIDUE ARITHMETIC

被引:135
作者
HUANG, A
TSUNODA, Y
GOODMAN, JW
ISHIHARA, S
机构
[1] Stanford University, Information Systems Laboratory, Stanford, CA
[2] Hitachi Ltd., Central Research Laboratory, Kokubunji, Tokyo
[3] Electro-technical Laboratory, Opto-Electronics Section, Tanashi, Tokyo, 188
来源
APPLIED OPTICS | 1979年 / 18卷 / 02期
关键词
D O I
10.1364/AO.18.000149
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations.Calculations can, therefore, be performed in a fully parallel manner.Several different optical methods for performing residue arithmetic operations are described.A possible combination of such methods to form a matrix vector multiplier is considered.The potential advantages of optics in performing these kinds of operations are discussed.© 1979 Optical Society of America.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 23 条
[1]  
BASOV NG, 1972, LASER HDB, P1651
[2]  
BOND JW, 1974, AD780805D1
[3]  
CHEN B, 1978, DIGEST TOPICAL M INT
[4]  
CHENEY PW, 1961, THESIS STANFORD U
[5]  
COLLINS SA, 1977, P SOC PHOTO-OPT INST, V128, P313
[6]  
Garner H. L., 1959, IRE T ELECTRON COMPU, V8, P140, DOI DOI 10.1109/TEC.1959.5219515
[7]   OPERATIONS ACHIEVABLE WITH COHERENT OPTICAL INFORMATION-PROCESSING SYSTEMS [J].
GOODMAN, JW .
PROCEEDINGS OF THE IEEE, 1977, 65 (01) :29-38
[8]  
HUANG A, 1978, 64221 STANF EL LAB T
[9]  
HUANG A, 1975, APR P INT OPT COMP C
[10]  
KNUTH DE, 1969, SEMINUMERICAL ALGORI, P248