ON THE BRST OPERATOR OF W-STRINGS

被引:13
作者
BERGSHOEFF, E
BOONSTRA, HJ
DEROO, M
PANDA, S
SEVRIN, A
机构
[1] LAWRENCE BERKELEY LAB,THEORET PHYS GRP,BERKELEY,CA 94720
[2] UNIV CALIF BERKELEY,DEPT PHYS,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(93)90598-C
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the conditions under which the BRST operator of a W-string can be written as the sum of two operators that are separately nilpotent and anticommute with each other. We illustrate our results with the example of the non-critical W3-string. Furthermore, we apply our results to make a conjecture about a relationship between the spectrum of a non-critical W(n)-string and a W(n-1)-string.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 37 条
[1]   CLOSURE OF THE GAUGE ALGEBRA, GENERALIZED LIE-EQUATIONS AND FEYNMAN-RULES [J].
BATALIN, IA ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1984, 234 (01) :106-124
[2]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582
[3]   ABELIAN HIGGS KIBBLE MODEL, UNITARITY OF S-OPERATOR [J].
BECCHI, C ;
ROUET, A ;
STORA, R .
PHYSICS LETTERS B, 1974, B 52 (03) :344-346
[4]   A DERIVATION OF THE BRST OPERATOR FOR NONCRITICAL W-STRINGS [J].
BERGSHOEFF, E ;
SEVRIN, A ;
SHEN, X .
PHYSICS LETTERS B, 1992, 296 (1-2) :95-103
[5]  
BERGSHOEFF EA, UNPUB
[6]  
BERSCHADSKY M, CERNTH669492 PREPR
[7]   A BRST OPERATOR FOR NONCRITICAL W-STRINGS [J].
BERSHADSKY, M ;
LERCHE, W ;
NEMESCHANSKY, D ;
WARNER, NP .
PHYSICS LETTERS B, 1992, 292 (1-2) :35-41
[8]   NON-LINEARLY EXTENDED VIRASORO ALGEBRAS - NEW PROSPECTS FOR BUILDING STRING THEORIES [J].
BILAL, A ;
GERVAIS, JL .
NUCLEAR PHYSICS B, 1989, 326 (01) :222-236
[9]  
BOUWKNEGT P, USC9311 PREPR
[10]   PHYSICAL STATES AND SCALING PROPERTIES OF W-GRAVITIES AND W-STRINGS [J].
DAS, SR ;
DHAR, A ;
RAMA, SK .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (10) :2295-2333