IN-VIVO PHOTOSYNTHETIC ELECTRON-TRANSPORT DOES NOT LIMIT PHOTOSYNTHETIC CAPACITY IN PHOSPHATE-DEFICIENT SUNFLOWER AND MAIZE LEAVES

被引:76
作者
JACOB, J [1 ]
LAWLOR, DW [1 ]
机构
[1] ROTHAMSTED EXPTL STN, AFRC, INST ARABLE CROPS RES, DEPT BIOCHEM & PHYSIOL, HARPENDEN AL5 2JQ, HERTS, ENGLAND
关键词
HELIANTHUS-ANNUUS; ZEA-MAYS; ADENYLATES; CHLOROPHYLL FLUORESCENCE; FLUORESCENCE QUENCHING; PHOSPHATE; PHOTOSYNTHESIS; PIGMENT SYSTEM-II; PYRIDINE NUCLEOTIDES; REACTION CENTER; QUANTUM YIELD;
D O I
10.1111/j.1365-3040.1993.tb00500.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effects of extreme phosphate (Pi) deficiency during growth on the contents of adenylates and pyridine nucleotides and the in vivo photochemical activity of photosystem II (PSII) were determined in leaves of Helianthus annuus and Zea mays grown under controlled environmental conditions. Phosphate deficiency decreased the amounts of ATP and ADP per unit leaf area and the adenylate energy charge of leaves. The amounts of oxidized pyridine nucleotides per unit leaf area decreased with Pi deficiency, but not those of reduced pyridine nucleotides. This resulted in an increase in the ratio of reduced to oxidized pyridine nucleotides in Pi-deficient leaves. Analysis of chlorophyll a fluorescence at room temperature showed that Pi deficiency decreased the efficiency of excitation capture by open PSII reaction centres (phi(e)), the in vivo quantum yield of PSII photochemistry (phi(PSII)) and the photochemical quenching co-efficient (q(P)), and increased the non-photochemical quenching co-efficient (q(N)) indicating possible photoinhibitory damage to PSII. Supplying Pi to Pi-deficient sunflower leaves reversed the long-term effects of Pi-deficiency on PSII photochemistry. Feeding Pi-sufficient sunflower leaves with mannose or FCCP rapidly produced effects on chlorophyll a fluorescence similar to long-term Pi-deficiency. Our results suggest a direct role of Pi and photophosphorylation on PSII photochemistry in both long- and short-term responses of photosynthetic machinery to Pi deficiency. The relationship between phi(PSII) and the apparent quantum yield of CO2 assimilation determined at varying light intensity and 21 kPa O2 and 35 Pa CO2 partial pressures in the ambient air was linear in Pi-sufficient and Pi-deficient leaves of sunflower and maize. Calculations show that there was relatively more PSII activity per mole of CO2 assimilated by the Pi-deficient leaves. This indicates that in these leaves a greater proportion of photosynthetic electrons transported across PSII was used for processes other than CO2 reduction. Therefore, we conclude that in vivo photosynthetic electron transport through PSII did not limit photosynthesis in Pi-deficient leaves of sunflower and maize and that the decreased CO2 assimilation was a consequence of a smaller ATP content and lower energy charge which restricted production of ribulose, 1-5, bisphosphate, the acceptor for CO2.
引用
收藏
页码:785 / 795
页数:11
相关论文
共 29 条
[1]   CHANGES IN LEAF PHOSPHATE STATUS HAVE ONLY SMALL EFFECTS ON THE PHOTOCHEMICAL APPARATUS OF SUGAR-BEET LEAVES [J].
ABADIA, J ;
RAO, IM ;
TERRY, N .
PLANT SCIENCE, 1987, 50 (01) :49-55
[2]  
Allen J. F., 1986, Photosynthesis: energy transduction: a practical approach, P103
[3]   EFFECTS OF PHOSPHORUS-NUTRITION ON RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE ACTIVATION, PHOTOSYNTHETIC QUANTUM YIELD AND AMOUNTS OF SOME CALVIN-CYCLE METABOLITES IN SPINACH LEAVES [J].
BROOKS, A .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1986, 13 (02) :221-237
[4]  
CARRIER JM, 1979, PHOTOSYNTHETICA, V13, P323
[5]   OXYGEN EVOLUTION BY ISOLATED CHLOROPLASTS WITH CARBON DIOXIDE AS HYDROGEN ACCEPTOR . A REQUIREMENT FOR ORTHOPHOSPHATE OR PYROPHOSPHATE [J].
COCKBURN, W ;
BALDRY, CW ;
WALKER, DA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1967, 131 (03) :594-&
[6]   RELATIONSHIPS BETWEEN RESPIRATION RATE AND ADENYLATE AND CARBOHYDRATE POOLS OF THE SOYBEAN FRUIT [J].
FADER, GM ;
KOLLER, HR .
PLANT PHYSIOLOGY, 1984, 75 (03) :694-699
[7]  
FLUGGE UI, 1991, ANNU REV PLANT PHYS, V42, P129, DOI 10.1146/annurev.pp.42.060191.001021
[8]   REGULATION OF PHOTOSYNTHESIS IN ISOLATED SPINACH-CHLOROPLASTS DURING ORTHO-PHOSPHATE LIMITATION [J].
FURBANK, RT ;
FOYER, CH ;
WALKER, DA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 894 (03) :552-561
[9]   THE RELATIONSHIP BETWEEN THE QUANTUM YIELD OF PHOTOSYNTHETIC ELECTRON-TRANSPORT AND QUENCHING OF CHLOROPHYLL FLUORESCENCE [J].
GENTY, B ;
BRIANTAIS, JM ;
BAKER, NR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 990 (01) :87-92
[10]   EFFECTS OF INORGANIC-PHOSPHATE ON THE LIGHT DEPENDENT THYLAKOID ENERGIZATION OF INTACT SPINACH-CHLOROPLASTS [J].
HEINEKE, D ;
STITT, M ;
HELDT, HW .
PLANT PHYSIOLOGY, 1989, 91 (01) :221-226