THE SU(2) ADJOINT HIGGS-MODEL IN 3 DIMENSIONS

被引:32
作者
NADKARNI, S
机构
[1] RUTGERS STATE UNIV, DEPT PHYS & ASTRON, PISCATAWAY, NJ 08855 USA
[2] UNIV KENTUCKY, DEPT PHYS & ASTRON, LEXINGTON, KY 40506 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(90)90491-U
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The variable-length SU(2) adjoint Higgs model is investigated analytically and numerically on a three-dimensional lattice. The model is shown to have two confining phases, an SU(2)-symmetric disordered phase and a U(1)-symmetric ordered phase, which are analytically connected at strong gauge coupling for sufficiently large Higgs self-coupling. A tricritical line devides the phase boundary into first-order and second-order regions. Apart from its intrinsic interest, this model is relevant to the study of four-dimensional SU(2) gauge theory at high temperatures. © 1990.
引用
收藏
页码:559 / 579
页数:21
相关论文
共 53 条
[1]  
AHARONY A, 1983, LECTURE NOTES PHYSIC, V186, P252
[2]   3-DIMENSIONAL LATTICE GAUGE-THEORY AND STRINGS [J].
AMBJORN, J ;
OLESEN, P ;
PETERSON, C .
NUCLEAR PHYSICS B, 1984, 244 (01) :262-276
[3]   STRING TENSIONS FOR LATTICE GAUGE-THEORIES IN 2+1 DIMENSIONS [J].
AMBJORN, J ;
HEY, AJG ;
OTTO, S .
NUCLEAR PHYSICS B, 1982, 210 (03) :347-368
[4]   THE SU(2) ADJOINT HIGGS-MODEL - PHASE-STRUCTURE BY MEAN FIELD APPROXIMATIONS [J].
BAIER, R ;
REUSCH, HJ .
NUCLEAR PHYSICS B, 1987, 285 (03) :535-557
[5]   SPECIFIC-HEAT MEASUREMENTS OF THE 3-DIMENSIONAL SO(3) LATTICE GAUGE-THEORY [J].
BAIG, M ;
CUERVO, A .
PHYSICS LETTERS B, 1987, 189 (1-2) :169-172
[6]  
Baig M., 1988, Nuclear Physics B, Proceedings Supplements, V4, P21, DOI 10.1016/0920-5632(88)90076-X
[7]   MONOPOLES AND SPECIFIC-HEAT IN SU(2) LATTICE GAUGE-THEORY WITH A MIXED ACTION [J].
BAIG, M ;
CUERVO, A .
NUCLEAR PHYSICS B, 1987, 280 (01) :97-107
[8]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[9]  
BERG B, 1988, 1988 P LATT HIGGS WO
[10]   THE SPHERICAL MODEL OF A FERROMAGNET [J].
BERLIN, TH ;
KAC, M .
PHYSICAL REVIEW, 1952, 86 (06) :821-835