ELASTIC EQUILIBRIUM OF CURVED THIN-FILMS

被引:25
作者
SROLOVITZ, DJ [1 ]
SAFRAN, SA [1 ]
TENNE, R [1 ]
机构
[1] UNIV MICHIGAN,DEPT MAT SCI & ENGN,ANN ARBOR,MI 48109
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 06期
关键词
D O I
10.1103/PhysRevE.49.5260
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a unified theory of the bending of crystalline films that accounts for both elastic effects and crystal defects. Our theory predicts a transition from a bent coherent film with no dislocations to an incoherent, dislocated one as the film thickness or curvature is increased. The presence of the dislocations serves to renormalize the bending modulus of the system to smaller values. The degree to which the dislocations relax the elastic bending energy is found by calculating the equilibrium dislocation density and bending energy as a function of elastic constants, curvature, and film thickness. We demonstrate that at critical values of the curvature or thickness, there is a second-order phase transition between the undislocated and dislocated film. Generalizing these results to anisotropic elastic systems shows that weak bonding between crystal planes (such as in graphite) leads to a significant decrease in the critical curvature or thickness. An analysis of the case where the relaxation of the bending energy occurs by the formation of grain boundaries is also presented. We find that the introduction of grain boundaries can relieve the energy of the curved crystal more effectively than can the introduction of a uniform array of dislocations. Nonetheless, dislocation formation may be the dominant relaxation mechanism for very thin films (thin compared to the dislocation spacing in the grain boundary) and/or when dislocation migration kinetics are slow. Examples based upon nested fullerenes and bilayer surfactants are discussed.
引用
收藏
页码:5260 / 5270
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 1982, THEORY DISLOCATIONS
[2]  
[Anonymous], 1986, THEORY ELASTICITY, DOI [DOI 10.1016/C2009-0-25521-8, 10.1016/C2009-0-25521-8]
[3]   ELASTIC CONSTANTS OF COMPRESSION-ANNEALED PYROLYTIC GRAPHITE [J].
BLAKSLEE, OL .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (08) :3373-+
[4]   DISLOCATION ENERGIES IN ANISOTROPIC CRYSTALS [J].
FOREMAN, AJE .
ACTA METALLURGICA, 1955, 3 (04) :322-330
[5]   ONE-DIMENSIONAL DISLOCATIONS .2. MISFITTING MONOLAYERS AND ORIENTED OVERGROWTH [J].
FRANK, FC ;
VANDERMERWE, JH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1949, 198 (1053) :216-225
[6]   The theory of the elastic limit and the solidity of crystal bodies [J].
Frenkel, J .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (7/8) :572-609
[7]  
GELBART WM, 1993, MICELLES MEMBRANES M
[8]   ELASTIC PROPERTIES OF LIPID BILAYERS - THEORY AND POSSIBLE EXPERIMENTS [J].
HELFRICH, W .
ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1973, C 28 (11-1) :693-703
[9]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[10]  
KLASSENNEKLYUDO.MV, 1964, MECHANICAL TWINNING