SOME LOWER BOUNDS ON SIGNAL PARAMETER ESTIMATION

被引:215
作者
ZIV, J
ZAKAI, M
机构
[1] Bell Telephone Laboratories, Inc., Murray Hill, N.J.
[2] Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa
关键词
D O I
10.1109/TIT.1969.1054301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New bounds are presented for the maximum accuracy with which parameters of signals imbedded in white noise can be estimated. The bounds are derived by comparing the estimation problem with related optimal detection problems. They are, with few exceptions, independent of the bias and include explicitly the dependence on the a priori interval. The new results are compared with previously known results. © 1969 IEEE. All rights reserved.
引用
收藏
页码:386 / +
页数:1
相关论文
共 15 条
[1]  
ABRAMOWITZ M, 1964, NBS55 APPL MATH SER
[2]  
HELSTROM CW, 1960, STATISTICAL THEORY S
[3]  
LOEVE M, 1964, PROBABILITY THEORY
[4]   A USEFUL FORM OF BARANKIN LOWER BOUND AND ITS APPLICATION TO PPM THRESHOLD ANALYSIS [J].
MCAULAY, RJ ;
SEIDMAN, LP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1969, 15 (02) :273-+
[5]  
SAVAGE IR, 1961, J RES NATL BUREAU B, V65, P211
[6]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (04) :623-656
[7]  
Slepian D., 1954, IEEE T INF THEORY, V3, P68, DOI [10.1109/IREPGIT.1954.6373401, DOI 10.1109/IREPGIT.1954.6373401]
[8]   PARAMETER ESTIMATION FOR WAVEFORMS IN ADDITIVE GAUSSIAN NOISE [J].
SWERLING, P .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1959, 7 (02) :152-166
[9]   PARAMETER-ESTIMATION ACCURACY FORMULAS [J].
SWERLING, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1964, 10 (04) :302-&
[10]  
Viterbi A.J., 1966, PRINCIPLES COHERENT