CONVERGENCE OF STOCHASTIC CELLULAR AUTOMATION TO BURGERS-EQUATION - FLUCTUATIONS AND STABILITY

被引:15
作者
LEBOWITZ, JL [1 ]
ORLANDI, E [1 ]
PRESUTTI, E [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT PHYS,NEW BRUNSWICK,NJ 08903
来源
PHYSICA D | 1988年 / 33卷 / 1-3期
关键词
D O I
10.1016/S0167-2789(98)90017-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:165 / 188
页数:24
相关论文
共 16 条
[1]  
Boghosian B. M., 1987, Complex Systems, V1, P17
[2]  
BOLDRIGHINI C, 1988, COMPUTER SIMULATION
[3]  
CATEGNOL R, 1975, LECTURE NOTES PHYSIC, V36
[4]  
DEMASI A, 1987, MICROSCOPIC STRUCTUR
[5]  
DEMASI A, 1987, WEAKLY ASYMMETRIC SI
[6]  
DHUMIERES D, 1986, EUROPHYS LETT, V2, P291, DOI 10.1209/0295-5075/2/4/006
[7]  
Feller W, 1971, INTRO PROBABILITY TH
[8]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[9]  
FRISCH U, 1987, LATTICE GAS HYDRODYN
[10]   TIME EVOLUTION OF A 2-DIMENSIONAL MODEL SYSTEM .1. INVARIANT STATES AND TIME CORRELATION-FUNCTIONS [J].
HARDY, J ;
POMEAU, Y ;
PAZZIS, OD .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (12) :1746-1759