SIMPLE TANDEM DNA REPEATS AND HUMAN GENETIC-DISEASE

被引:300
作者
SUTHERLAND, GR
RICHARDS, RI
机构
[1] Centre for Medical Genetics, Dept. Cytogenet. and Molec. Genet., Women's and Children's Hospital, Adelaide
关键词
FRAGILE X SYNDROME; TRINUCLEOTIDE REPEATS; CHROMOSOMAL FRAGILE SITES; SPINOCEREBELLAR ATAXIAS; MYOTONIC DYSTROPHY;
D O I
10.1073/pnas.92.9.3636
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The human genome contains many repeated DNA sequences that vary in complexity of repeating unit from a single nucleotide to a whole gene, The repeat sequences can be widely dispersed or in simple tandem arrays, Arrays of up to 5 or 6 nt are known as simple tandem repeats, and these are widely dispersed and highly polymorphic, Members of one group of the simple tandem repeats, the trinucleotide repeats, can undergo an increase in copy number by a process of dynamic mutation. Dynamic mutations of the CCG trinucleotide give rise to one group of fragile sites on human chromosomes, the rare folate-sensitive group, One member of this group, the fragile X (FRAXA) is responsible for the most common familial form of mental retardation, Another member of the group FRAXE is responsible for a rarer mild form of mental retardation, Similar mutations of AGC repeats give rise to a number of neurological disorders. The expanded repeats are unstable between generations and somatically, The intergenerational instability gives rise to unusual patterns of inheritance-particularly anticipation, the increasing severity and/or earlier age of onset of the disorder in successive generations, Dynamic mutations have been found only in the human species, and possible reasons for this are considered, The mechanism of dynamic mutation is discussed, and a number of observations of simple tandem repeat mutation that could assist in understanding this phenomenon are commented on.
引用
收藏
页码:3636 / 3641
页数:6
相关论文
共 86 条
  • [1] Weber J.L., Genomics, 7, pp. 524-530, (1990)
  • [2] Richards R.I., Holman K., Yu S., Sutherland G.R., Hum. Mol. Genet., 2, pp. 1429-1435, (1993)
  • [3] Wang Y.-H., Amirhaeri S., Kang S., Wells R.D., Griffith J.D., Science, 265, pp. 669-671, (1994)
  • [4] Richards R.I., Sutherland G.R., Cell, 70, pp. 709-712, (1992)
  • [5] Yu S., Pritchard M., Kremer E., Lynch M., Nancarrow J., Baker E., Holman K., Mulley J.C., Warren S.T., Schlessinger D., Sutherland G.R., Richards R.I., Science, 252, pp. 1179-1181, (1991)
  • [6] Oberle I., Rousseau F., Heitz D., Kretz C., Devys D., Hanauer A., Boue J., Bertheas M.F., Mandel J.-L., Science, 252, pp. 1097-1102, (1991)
  • [7] Verkerk A.J.M.H., Pieretti M., Sutcliffe J.S., Fu Y.-H., Kuhl D.P.A., Pizzuti A., Reiner O., Richards S., Victoria M.F., Zhang F., Eussen B.E., Van Ommen G.-J., Blonden L.A.J., Riggins G.J., Chastain J.L., Kunst C.B., Galjaard H., Caskey C.T., Nelson D.L., Oostra B.A., Warren S.T., Cell, 65, pp. 905-914, (1991)
  • [8] Kremer E.J., Pritchard M., Lynch M., Yu S., Holman K., Baker E., Warren S.T., Schlessinger D., Sutherland G.R., Richards R.I., Science, 252, pp. 1711-1714, (1991)
  • [9] Yu S., Mulley J., Loesch D., Turner G., Donnelly A., Gedeon A., Hillen D., Kremer E., Lynch M., Pritchard M., Sutherland G.R., Richards R.I., Am. J. Hum. Genet., 50, pp. 968-980, (1992)
  • [10] Kunst C.B., Warren S.T., Cell, 77, pp. 853-861, (1994)