LEVEL SET REPRESENTATION FOR THE GIBBS-STATES OF THE FERROMAGNETIC ISING-MODEL

被引:4
作者
HIGUCHI, Y
机构
[1] Department of Mathematics, Faculty of Sciences, Kobe University, Kobe, 657, Rokko
关键词
D O I
10.1007/BF01192162
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of a real valued random field with parameters in the d-dimensional cubic lattice, such that the distribution of the level set of this random field is a Gibbs state for the nearest neighbour ferromagnetic Ising model. Using this, we prove the continuity of the percolation probability with respect to the parameter (beta, h) in the uniqueness region except on the critical curve GAMMA-c = {(beta, h(c)(beta))}, where h(c)(beta) is the critical level of the external field above which percolation takes place.
引用
收藏
页码:203 / 221
页数:19
相关论文
共 17 条