Resonances for intermittent systems

被引:64
作者
Baladi, V. [1 ]
Eckmann, J-P [1 ]
Ruelle, D. [2 ]
机构
[1] Univ Geneva, Sect Math, CH-1211 Geneva 24, Switzerland
[2] IHES, F-91440 Bures Sur Yvette, France
关键词
D O I
10.1088/0951-7715/2/1/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is increasing theoretical and numerical evidence that for many interesting dynamical systems the power spectrum of an observable A extends to a meromorphic function in the complex frequency plane. The position of the complex poles or 'resonances' is independent of the observable A which is monitored. In this paper, we study the resonances for intermittent dynamical systems by using a probabilistic independence assumption about recurrence times. A close agreement between theory and numerical experiments is obtoined.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 13 条
[1]  
ECKMANN JP, 1981, J PHYS A, V14, P3135
[2]  
Henrici P., 1977, APPL COMPUTATIONAL C
[3]  
HOFFMANN C, 1976, THESIS ETHZ ZURICH
[4]   RESONANCES IN CHAOTIC DYNAMICS [J].
ISOLA, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (02) :343-352
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]   GLOBAL SPECTRAL STRUCTURES OF INTERMITTENT CHAOS [J].
MORI, H ;
OKAMOTO, H ;
SO, BC ;
KUROKI, S .
PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (04) :784-801
[8]   SPECTRAL STRUCTURE AND UNIVERSALITY OF INTERMITTENT CHAOS [J].
MORI, H ;
SHOBU, K ;
SO, BC ;
OKAMOTO, H .
PHYSICA SCRIPTA, 1985, T9 :27-34
[9]   ON THE RATE OF MIXING OF AXIOM-A FLOWS [J].
POLLICOTT, M .
INVENTIONES MATHEMATICAE, 1985, 81 (03) :413-426
[10]   INTERMITTENT TRANSITION TO TURBULENCE IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
POMEAU, Y ;
MANNEVILLE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (02) :189-197