MAGIC-ANGLE SPINNING NMR-STUDIES OF MOLECULAR-ORGANIZATION IN MULTIBILAYERS FORMED BY 1-OCTADECANOYL-2-DECANOYL-SN-GLYCERO-3-PHOSPHOCHOLINE

被引:30
作者
HALLADAY, HN
STARK, RE
ALI, S
BITTMAN, R
机构
[1] CUNY COLL STATEN ISL, DEPT CHEM, STATEN ISL, NY 10301 USA
[2] CUNY QUEENS COLL, DEPT CHEM & BIOCHEM, FLUSHING, NY 11367 USA
关键词
D O I
10.1016/S0006-3495(90)82490-5
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Magic-angle spinning 1H and 13C nuclear magnetic resonance (NMR) have been employed to study 50%-by-weight aqueous dispersions of 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine (C[18]:C[10]PC) and 1-octadecanoyl-2-d19-decanoyl-PC (C[18]:C[10]PC-d19), mixed-chain phospholipids which can form interdigitated multibilayers. The 1H NMR linewidth for methyl protons of the choline headgroup has been used to monitor the liquid crystalline-to-gel (LC-to-G) phase transition and confirm variations between freezing and melting temperatures. Both 1H and 13C spin-lattice relaxation times indicate unusual restrictions on segmental reorientation at megahertz frequencies for C(18):C(10)PC as compared with symmetric-chain species in the LC state; nevertheless each chemical moiety of the mixed-chain phospholipid exhibits motional behavior that may be classified as liquidlike. Two-dimensional nuclear Overhauser spectroscopy (NOESY) on C(18):C(10)PC and C(18):C(10)PC-d19 reveals cross-peaks between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup, and several experimental and theoretical considerations argue against an interpretation based on spin diffusion. Using NMR relaxation times and NOESY connectivities along with a computational formalism for four-spin systems (Keepers, J. W., and T. L. James. 1984. J. Magn. Reson. 57:404–426), an estimate of 3.5 A is obtained for the average distance between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup. This finding is consistent with a degree of interdigitation similar to that proposed for organized assemblies of gel-state phosphatidylcholine molecules with widely disparate acyl-chain lengths (Hui, S. W., and C.-H. Huang. 1986. Biochemistry. 25:1330–1335); however, acyl-chain bendback or other intermolecular interactions may also contribute to the NOESY results. For multibilayers of C(18):C(10)PC in the gel phase, 13C chemical-shift measurements indicate that trans conformers predominate along both acyl chains. 13C Spin-lattice relaxation times confirm the unusual motional restrictions noted in the LC state; nevertheless, 13C and 1H rotating-frame relaxation times indicate that the interdigitated arrangement enhances chain or bilayer motions which occur at mid-kilohertz frequencies. © 1990, The Biophysical Society. All rights reserved.
引用
收藏
页码:1449 / 1461
页数:13
相关论文
共 51 条