BREAKDOWN OF ELASTICITY THEORY IN NEMATIC POLYMERS

被引:12
作者
TONER, J
机构
[1] IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights
关键词
D O I
10.1103/PhysRevLett.68.1331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that linearized elasticity theory fails for nematic polymers in less than four dimensions. Instead, the polymer osmotic elastic modulus E and the elastic moduli K2 and K3 all become singular functions of wave vector q as \q\ --> 0, with E vanishing like q(eta-perpendicular-to) and K2,3 diverging like q-eta-2,3. These exponents satisfy an exact scaling relation eta-parallel-to + eta-2 + eta-3 = 1 in three dimensions, and are calculated to second order in epsilon = 4 - d, yielding eta-parallel-to = 0.46 +/- 0.015, eta-2 = 0.28 +/- 0.015, and eta-3 = 0.21 +/- 0.015 in d = 3.
引用
收藏
页码:1331 / 1334
页数:4
相关论文
共 12 条
[1]  
Ciferri A., 1982, POLYM LIQUID CRYSTAL
[2]  
DEGENNES PG, 1977, PHYSICS LIQUID CRYST, P85
[3]  
FORSTER D, 1975, HYDRODYNAMIC FLUCTUA, pCH11
[4]   POLYMERIC LIQUID-CRYSTALS - FRANK ELASTICITY AND LIGHT-SCATTERING [J].
GENNES, PGD .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1977, 34 (08) :177-182
[5]   NON-LINEAR ELASTIC THEORY OF SMECTIC LIQUID-CRYSTALS [J].
GRINSTEIN, G ;
PELCOVITS, RA .
PHYSICAL REVIEW A, 1982, 26 (02) :915-925
[6]   ANHARMONIC EFFECTS IN BULK SMECTIC LIQUID-CRYSTALS AND OTHER ONE-DIMENSIONAL SOLIDS [J].
GRINSTEIN, G ;
PELCOVITS, RA .
PHYSICAL REVIEW LETTERS, 1981, 47 (12) :856-859
[7]  
LEDOUSSAL P, 1991, EUROPHYS LETT, V15, P161, DOI 10.1209/0295-5075/15/2/009
[8]  
MEYER RB, POLYM LIQUID CRYSTAL, pHC6
[9]   LINE LIQUIDS [J].
NELSON, DR .
PHYSICA A, 1991, 177 (1-3) :220-232
[10]   HEXAGONAL AND NEMATIC PHASES OF CHAINS .1. CORRELATION-FUNCTIONS [J].
SELINGER, JV ;
BRUINSMA, RF .
PHYSICAL REVIEW A, 1991, 43 (06) :2910-2921