BOUNDARY VELOCITY CONTROL OF INCOMPRESSIBLE-FLOW WITH AN APPLICATION TO VISCOUS DRAG REDUCTION

被引:111
作者
GUNZBURGER, MD
HOU, LS
SVOBODNY, TP
机构
[1] UNIV LAVAL,DEPT MATH & STAT,QUEBEC CITY G1K 7P4,QUEBEC,CANADA
[2] WRIGHT STATE UNIV,DEPT MATH & STAT,DAYTON,OH 45435
关键词
OPTIMAL CONTROL; NAVIER-STOKES EQUATIONS; BOUNDARY CONTROL; FINITE ELEMENT METHODS; DISTRIBUTED PARAMETER SYSTEMS;
D O I
10.1137/0330011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An optimal boundary control problem for the Navier-Stokes equations is presented. the control is the velocity on the boundary, which is constrained to lie in a closed, convex subset of H1/2 of the boundary. A necessary condition for optimality is derived. Computations are done when the control set is actually finite-dimensional, resulting in all application to viscous drag reduction.
引用
收藏
页码:167 / 181
页数:15
相关论文
共 13 条
[1]  
Cattabriga L., 1961, REND MAT SEM U PADOV, V31, P308
[2]  
DUVAUT G, 1976, INEQUALITIES MECHANI
[3]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[4]  
GIRAULT V, 1979, FINITE ELEMENT APPRO
[5]  
GUNZBURGER M, IN PRESS MATH MODEL
[6]  
HOUGH GR, 1980, VISCOUS FLOW DRAG RE
[7]  
Ioffe A., 1979, EXTREMAL PROBLEMS
[8]  
Ladyzhenskaya O., 1963, MATH THEORY VISCOUS
[9]  
SERRIN J, 1959, HDB PHYSIK, V8, P1
[10]  
Temam R., 1983, NAVIER STOKES EQUATI