GLOBAL CONVERGENCE OF A CLASS OF QUASI-NEWTON METHODS ON CONVEX PROBLEMS

被引:261
作者
BYRD, RH
NOCEDAL, J
YUAN, YX
机构
[1] NORTHWESTERN UNIV,DEPT ELECT ENGN & COMP SCI,EVANSTON,IL 60201
[2] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
关键词
D O I
10.1137/0724077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1171 / 1190
页数:20
相关论文
共 19 条
[1]   QUASI-NEWTON METHODS AND THEIR APPLICATION TO FUNCTION MINIMISATION [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1967, 21 (99) :368-&
[2]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[3]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1
[4]  
Dixon L.C.W., 1972, J OPTIMIZ THEORY APP, V10, P34, DOI 10.1007/BF00934961
[5]   LOCAL CONVERGENCE ANALYSIS FOR PARTITIONED QUASI-NEWTON UPDATES [J].
GRIEWANK, A ;
TOINT, PL .
NUMERISCHE MATHEMATIK, 1982, 39 (03) :429-448
[6]   VARIABLE METRIC METHODS OF MINIMISATION [J].
PEARSON, JD .
COMPUTER JOURNAL, 1969, 12 (02) :171-&
[7]  
Powell M. J. D, 1971, J I MATHS APPLICS, V7, P21
[8]   HOW BAD ARE THE BFGS AND DFP METHODS WHEN THE OBJECTIVE FUNCTION IS QUADRATIC [J].
POWELL, MJD .
MATHEMATICAL PROGRAMMING, 1986, 34 (01) :34-47
[9]  
POWELL MJD, 1976, NONLINEAR PROGRAMMIN, V9
[10]  
RITTER K, 1981, MATH PROGRAM STUD, V14, P178, DOI 10.1007/BFb0120928