AN INTERMEDIATE-PRECISION APPROXIMATION OF THE INVERSE CUMULATIVE NORMAL-DISTRIBUTION

被引:2
作者
BOGEN, KT [1 ]
机构
[1] LAWRENCE LIVERMORE NATL LAB,DIV ENVIRONM SCI,LIVERMORE,CA 94550
关键词
APPROXIMATION; INVERSE CUMULATIVE NORMAL DISTRIBUTION; INVERSE ERROR FUNCTION;
D O I
10.1080/03610919308813125
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Accurate methods used to evaluate the inverse of the standard normal cumulative distribution function at probability p commonly used today are too cumbersome and/or slow to obtain a large number of evaluations reasonably quickly, e.g., as required in certain Monte Carlo applications. Previously reported simple approximations all have a maximum absolute error epsilon(m) > 10(-4) for a p-range of practical concern, such as Min[p,1-p] greater-than-or-equal-to 10(-6). An 11-term polynomial-based approximation is presented for which epsilon(m) < 10(-6) in this range.
引用
收藏
页码:797 / 801
页数:5
相关论文
共 21 条
[1]   INVERSE OF ERROR FUNCTION [J].
CARLITZ, L .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (02) :459-&
[2]  
DERENZO SE, 1977, MATH COMPUT, V31, P214, DOI 10.1090/S0025-5718-1977-0423761-X
[4]  
HAMAKER HC, 1977, APPL STATIST, V27, P76
[5]  
Hart J.F., 1978, COMPUTER APPROXIMATI
[6]  
HASTINGS C, 1955, APPROXIMATIONS DIGIT, P191
[7]  
HOAGLIN DC, 1991, APPL STATIST, V39, P255
[8]   AN INVESTIGATION OF UNCERTAINTY AND SENSITIVITY ANALYSIS TECHNIQUES FOR COMPUTER-MODELS [J].
IMAN, RL ;
HELTON, JC .
RISK ANALYSIS, 1988, 8 (01) :71-90
[9]   A DISTRIBUTION-FREE APPROACH TO INDUCING RANK CORRELATION AMONG INPUT VARIABLES [J].
IMAN, RL ;
CONOVER, WJ .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1982, 11 (03) :311-334
[10]  
LIN JT, 1989, APPL STAT-J ROY ST C, V38, P69