ASYMPTOTICS FOR SOLUTIONS OF SYSTEMS OF SMOOTH RECURRENCE EQUATIONS

被引:17
作者
BAULDRY, WC
MATE, A
NEVAI, P
机构
[1] OHIO STATE UNIV, COLUMBUS, OH 43210 USA
[2] APPALACHIAN STATE UNIV, BOONE, NC 28608 USA
[3] INST ADV STUDY, PRINCETON, NJ 08543 USA
[4] UNIV S CAROLINA, COLUMBIA, SC 29208 USA
关键词
D O I
10.2140/pjm.1988.133.209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:209 / 227
页数:19
相关论文
共 14 条
[1]  
BAULDRY W, 1986, APPROXIMATION THEORY, V5, P251
[2]  
FREUD G, 1973, ACTA SCI MATH, V34, P91
[3]  
FREUD G, 1976, P ROY IRISH ACAD A, V76, P1
[4]  
Freud G, 1966, ORTHOGONAL POLYNOMIA
[5]   NONNEGATIVE SOLUTIONS OF A NON-LINEAR RECURRENCE [J].
LEW, JS ;
QUARLES, DA .
JOURNAL OF APPROXIMATION THEORY, 1983, 38 (04) :357-379
[6]   FREUD CONJECTURE FOR EXPONENTIAL WEIGHTS [J].
LUBINSKY, DS ;
MHASKAR, HN ;
SAFF, EB .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 15 (02) :217-222
[7]  
LUBINSKY DS, IN PRESS CONSTRUCTIV
[8]  
MAGNUS AP, 1986, J APPROX THEORY, V46, P65, DOI 10.1016/0021-9045(86)90088-2
[9]  
MAGNUS AP, 1985, LECT NOTES MATH, V1171, P362
[10]   ASYMPTOTICS FOR SOLUTIONS OF SMOOTH RECURRENCE EQUATIONS [J].
MATE, A ;
NEVAI, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (03) :423-429