EXACT EFFECTIVE POTENTIAL FOR A SCALAR SOURCE COUPLED TO THE SINE-GORDON MODEL - TEST OF EFFECTIVE POTENTIALS FOR COMPOSITE NUCLEONS

被引:1
作者
COHEN, TD
LI, M
机构
来源
PHYSICAL REVIEW C | 1990年 / 42卷 / 03期
关键词
D O I
10.1103/PhysRevC.42.970
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Bethe ansatz methods are used to obtain an exact expression for the energy density for a system consisting of the (1+1)-dimensional sine-Gordon model coupled to an external scalar source. This method exploits the equivalence between the sine-Gordon model and the massive Thirring model. These calculations allow one to test various loop-expansion approximations to the effective potential for the scalar. Such calculations are of relevance to fundamental issues regarding quantum hadrodynamics. © 1990 The American Physical Society.
引用
收藏
页码:970 / 980
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1987, SOLITONS INSTANTONS
[2]   STRUCTURE AND SOLUTION OF THE MASSIVE THIRRING MODEL [J].
BERGKNOFF, H ;
THACKER, HB .
PHYSICAL REVIEW D, 1979, 19 (12) :3666-3681
[3]   LARGE-NC QCD, COMPOSITE NUCLEONS, AND THE DIRAC SEA [J].
COHEN, TD .
PHYSICAL REVIEW LETTERS, 1989, 62 (26) :3027-3030
[4]   MEAN-FIELD THEORY AND SOLITONIC MATTER [J].
COHEN, TD .
NUCLEAR PHYSICS A, 1989, 495 (3-4) :545-563
[5]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[6]   PARTICLE SPECTRUM IN MODEL FIELD-THEORIES FROM SEMICLASSICAL FUNCTIONAL INTEGRAL TECHNIQUES [J].
DASHEN, RF ;
HASSLACHER, B ;
NEVEU, A .
PHYSICAL REVIEW D, 1975, 11 (12) :3424-3450
[7]   2-LOOP CORRECTIONS FOR NUCLEAR-MATTER IN THE WALECKA MODEL [J].
FURNSTAHL, RJ ;
PERRY, RJ ;
SEROT, BD .
PHYSICAL REVIEW C, 1989, 40 (01) :321-353
[8]   QUANTUM FLUID GROUND-STATE OF THE SINE-GORDON MODEL WITH FINITE SOLITON DENSITY - EXACT RESULTS [J].
HALDANE, FDM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (02) :507-525
[9]   SOLITON OPERATORS FOR QUANTIZED SINE-GORDON EQUATION [J].
MANDELSTAM, S .
PHYSICAL REVIEW D, 1975, 11 (10) :3026-3030
[10]  
Rivers R. J., 1987, PATH INTEGRAL METHOD