SUBSTRATE SELECTIVITIES DIFFER FOR HEPATIC MITOCHONDRIAL AND PEROXISOMAL BETA-OXIDATION IN AN ANTARCTIC FISH, NOTOTHENIA-GIBBERIFRONS

被引:57
作者
CROCKETT, EL
SIDELL, BD
机构
[1] UNIV MAINE,DEPT ZOOL,ORONO,ME 04469
[2] UNIV MAINE,CTR MARINE STUDIES,ORONO,ME 04469
关键词
D O I
10.1042/bj2890427
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hepatic mitochondrial and peroxisomal beta-oxidation were examined in an Antarctic marine teleost, Notothenia gibberifrons. Enzymic profiles and rates of beta-oxidation by intact organelles were determined by using a range of fatty acyl-CoA substrates to evaluate substrate preferences. Partitioning of beta-oxidation between organelles was estimated. Substrate selectivities are broader for peroxisomal beta-oxidation than for mitochondrial beta-oxidation. Mitochondria show marked preference for the oxidation of a monounsaturated substrate, palmitoleoyl-CoA (C16:1), and two polyunsaturates, eicosapentaenoyl-CoA (C20:5) and docosahexaenoyl-CoA (C22:6). Carnitine palmitoyltransferase activities with palmitoleoyl-CoA (C16:1) are 2.4-fold higher than activities with palmitoyl-CoA (C16:0). Most polyunsaturated acyl-CoA esters measured appear to inhibit by over 40% the oxidation of palmitoyl-CoA by peroxisomes. Our findings suggest that the polyunsaturates, eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6), found in high concentrations in Antarctic fishes [Lund and Sidell (1992) Mar. Biol. 112, 377-3821, are utilized as fuels to support aerobic energy metabolism. Metabolic capacities of rate-limiting enzymes and beta-oxidation rates by intact organelles indicate that up to 30% of hepatic beta-oxidation in N. gibberifrons can be initiated by the peroxisomal pathway.
引用
收藏
页码:427 / 433
页数:7
相关论文
共 42 条