MODELING OF MATERIAL NONLINEARITIES IN STEEL STRUCTURES SUBJECTED TO TRANSIENT DYNAMIC LOADING

被引:45
作者
ELNASHAI, AS
IZZUDDIN, BA
机构
[1] Civil Engineering Department, Imperial College of Science, London, SW7 2BU, Imperial College Road
关键词
D O I
10.1002/eqe.4290220604
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper is concerned with the modelling of the behaviour of steel under cyclic and dynamic loading conditions. After a general discussion regarding the requirements for accurate and efficient modelling in dynamics, two models are described and implemented. The bilinear stress strain constitutive relationship with kinematic hardening is widely used in many computer codes, hence is used for 'control' purposes. The multisurface plasticity model is said to exhibit the important qualities of strain hardening, softening and relaxation to a mean stress. This model is described in detail and notes on model parameter evaluation are given. A number of validation examples are presented, due to the complexity of implementation of the multisurface formulation. This is followed by comparisons between the bilinear response predictions and those of the multisurface model for cyclic and dynamic tests on beam-columns. It is concluded that in the absence of material test data under cyclic loading, the bilinear model provides acceptably accurate response predictions. However, the multisurface model provides a significantly closer fit to experimental results, due to its ability to model a yield plateau and a non-linear strain-hardening regime as well as cyclic degradation. It can also be used for new types of steel where no distinct yield point is observed.
引用
收藏
页码:509 / 532
页数:24
相关论文
共 20 条
  • [1] BRODERICK B, 1992, ESEE926 IMP COLL LON
  • [2] BRODERICK B, 1993, THESIS U LONDON
  • [3] CASTIGLIONI CA, 1987, CONSTRUZIONI METALLI, P154
  • [4] UNIAXIAL CYCLIC STRESS-STRAIN BEHAVIOR OF STRUCTURAL-STEEL
    COFIE, NG
    KRAWINKLER, H
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1985, 111 (09): : 1105 - 1120
  • [5] PLASTIC INTERNAL VARIABLES FORMALISM OF CYCLIC PLASTICITY
    DAFALIAS, YF
    POPOV, EP
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1976, 43 (04): : 645 - 651
  • [6] ELGHAZOULI AY, 1991, EARTHQUAKE BLAST IMP
  • [7] EXPERIMENTAL BEHAVIOR OF PARTIALLY ENCASED COMPOSITE BEAM COLUMNS UNDER CYCLIC AND DYNAMIC LOADS
    ELNASHAI, AS
    TAKANASHI, K
    ELGHAZOULI, AY
    DOWLING, PJ
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS PART 2-RESEARCH AND THEORY, 1991, 91 : 259 - 272
  • [8] CYCLIC STRESS-STRAIN RESPONSE OF FCC METALS AND ALLOYS .1. PHENOMENOLOGICAL EXPERIMENTS
    FELTNER, CE
    LAIRD, C
    [J]. ACTA METALLURGICA, 1967, 15 (10): : 1621 - &
  • [9] FILIPPOU FC, 1983, UCBEERC8319 U CAL BE
  • [10] IZZUDDIN BA, 1992, UNPUB ELASTOPLASTI 1