CONSUMPTION OF ATMOSPHERIC METHANE BY TUNDRA SOILS

被引:256
作者
WHALEN, SC
REEBURGH, WS
机构
[1] Institute of Marine Science, University of Alaska, Fairbanks
关键词
D O I
10.1038/346160a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
EMISSION of methane from tundra soil contributes about 10% of the global atmospheric methane budget1. Moreover, tundra soils contain 15% of global soil carbon2, so the response of this large carbon reservoir to projected global warming3,4 could be important. Coupled biological models3-6 predict that a warmer climate will increase methane emission through increased rates of methanogenesis. Microbial oxidation of methane is, however, a possible control on emissions that has previously been overlooked. Here we report the results of field and laboratory experiments on methane consumption by tundra soils. For methane concentrations ranging from below to well above ambient, moist soils were found to consume methane rapidly; in non-waterlogged soils, equilibration with atmospheric methane was fast relative to microbial oxidation. We conclude that lowering of the water table in tundra as a result of a warmer, drier climate will decrease methane fluxes and could cause these areas to provide a negative feedback for atmospheric methane. © 1990 Nature Publishing Group.
引用
收藏
页码:160 / 162
页数:3
相关论文
共 36 条
[1]   INHIBITION EXPERIMENTS ON ANAEROBIC METHANE OXIDATION [J].
ALPERIN, MJ ;
REEBURGH, WS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (04) :940-945
[2]  
[Anonymous], GEOPHYSIOLOGY AMAZON
[3]  
BEDARD C, 1989, MICROBIOL REV, V53, P68
[4]   CONTINUING WORLDWIDE INCREASE IN TROPOSPHERIC METHANE, 1978 TO 1987 [J].
BLAKE, DR ;
ROWLAND, FS .
SCIENCE, 1988, 239 (4844) :1129-1131
[5]  
BORN M, 1990, Tellus Series B Chemical and Physical Meteorology, V42, P2, DOI 10.1034/j.1600-0889.1990.00002.x
[6]   BIOGEOCHEMICAL ASPECTS OF ATMOSPHERIC METHANE [J].
Cicerone, R. ;
Oremland, R. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (04) :299-327
[7]  
Conrad R, 1984, CURRENT PERSPECTIVES, P461
[8]   FUTURE GLOBAL WARMING FROM ATMOSPHERIC TRACE GASES [J].
DICKINSON, RE ;
CICERONE, RJ .
NATURE, 1986, 319 (6049) :109-115
[9]  
ENHALT D, 1974, TELLUS, V26, P59
[10]  
GOREAU TJ, 1988, AMBIO, V17, P274