WEIGHT AND DISTANCE STRUCTURE OF NORDSTROM-ROBINSON QUADRATIC CODE

被引:9
作者
PREPARATA, FP
机构
[1] Coordinated Science Laboratory, Department of Electrical Engineering, University of Illinois, Urbana
来源
INFORMATION AND CONTROL | 1968年 / 12卷 / 5-6期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0019-9958(68)90515-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The representation of the Nordstrom-Robinson optimum quadratic (15, 8) code in terms of polynomials over GF(2) (i.e.,, linear cyclic codes) leads to a nonheuristic proof of the distance properties of this code. In this paper it is shown that the weight and distance structures can be treated analogously and that the minimum distance and weight are 5. The analysis of this mechanism may be an essential step in the discovery of an entire class of nonlinear double error correcting codes. © 1968 Academic Press Inc.
引用
收藏
页码:466 / +
页数:1
相关论文
共 5 条
[1]   AN OPTIMUM NONLINEAR CODE [J].
NORDSTROM, AW ;
ROBINSON, JP .
INFORMATION AND CONTROL, 1967, 11 (5-6) :613-+
[2]  
PREPARATA FP, 1968, 2 P PRINC C INF SCIE
[3]  
ROBINSON JP, 1968, 1 P HAW INT C SYST S
[4]  
SCHONHEIM J, 1968, INFORM CONTROL, V12, P23
[5]  
Vasil'ev Yu.L., 1962, PROBL KIBERN, V8, P337