APPLICATION OF WELL-DISTRIBUTED SEQUENCES TO THE NUMERICAL-SIMULATION OF THE BOLTZMANN-EQUATION

被引:3
作者
BABOVSKY, H [1 ]
GROPENGIESSER, F [1 ]
NEUNZERT, H [1 ]
STRUCKMEIER, J [1 ]
WIESEN, B [1 ]
机构
[1] UNIV KAISERSLAUTERN,FACHBEREICH MATH,W-6750 KAISERSLAUTERN,GERMANY
关键词
Boltzmann equation; gas-surface interaction; Hypersonic flow; numerical freezing; random number generators; simulation methods; well-distributed sequences;
D O I
10.1016/0377-0427(90)90332-T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents numerical results about the application of well-distributed sequences for simulation methods of the Boltzmann equation. A short introduction to the Boltzmann equation will be given. Numerical simulation schemes for solving the Boltzmann equation will be discussed. A special effect, called "numerical freezing", which arises if one uses special well-distributed sequences instead of pseudorandom number generators for the calculation of the boundary conditions, will be introduced. © 1990.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 7 条
[1]   A CONVERGENCE PROOF FOR NANBU SIMULATION METHOD FOR THE FULL BOLTZMANN-EQUATION [J].
BABOVSKY, H ;
ILLNER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :45-65
[2]  
BABOVSKY H, 1988, 16TH P INT S RAR GAS, V118
[3]  
Babovsky H., 1986, MATH METHOD APPL SCI, V8, P223, DOI [10.1002/mma.1670080114, DOI 10.1002/MMA.1670080114]
[4]  
BIRD GA, 1976, MOL GAS DYNAMICS
[5]  
Kuipers L., 1974, UNIFORM DISTRIBUTION
[6]  
LECOT C, UNPUB COMPUTING
[7]  
Nanbu K, 1986, 15 INT S RAR GAS DYN, P369