GENERALIZED NONITERATIVE MAXIMUM-ENTROPY PROCEDURE FOR PHASE RETRIEVAL PROBLEMS IN OPTICAL SPECTROSCOPY

被引:23
作者
VARTIAINEN, EM [1 ]
ASAKURA, T [1 ]
PEIPONEN, KE [1 ]
机构
[1] UNIV JOENSUU, DEPT PHYS, VAISALA LAB, SF-80101 JOENSUU, FINLAND
基金
芬兰科学院;
关键词
D O I
10.1016/0030-4018(93)90123-M
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An improved version of the recently proposed noniterative maximum entropy procedure for phase retrieval is presented. Unlike the old version, the present procedure can be applied to any practical case of one-dimensional phase retrieval problems arising in optical spectrum analysis. The applicability of the present method is shown by real and synthetic examples taken from reflectance spectroscopy of linear optics and coherent anti-Stokes Raman spectroscopy of nonlinear optics.
引用
收藏
页码:149 / 156
页数:8
相关论文
共 14 条
[1]   MAXIMUM-ENTROPY IMAGE-RECONSTRUCTION FROM PHASELESS FOURIER DATA [J].
BRYAN, RK ;
SKILLING, J .
OPTICA ACTA, 1986, 33 (03) :287-299
[2]  
FIENUP JR, 1991, INT TRENDS OPTICS, P407
[3]   IMAGE-RECONSTRUCTION FROM INCOMPLETE AND NOISY DATA [J].
GULL, SF ;
DANIELL, GJ .
NATURE, 1978, 272 (5655) :686-690
[4]  
Haykin S., 1983, NONLINEAR METHODS SP, P9
[5]   KRAMERS-KRONIG RELATIONS IN NONLINEAR OPTICS [J].
HUTCHINGS, DC ;
SHEIKBAHAE, M ;
HAGAN, DJ ;
VANSTRYLAND, EW .
OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (01) :1-30
[6]   A NEW LINE-NARROWING PROCEDURE BASED ON FOURIER SELF-DECONVOLUTION, MAXIMUM-ENTROPY, AND LINEAR PREDICTION [J].
KAUPPINEN, JK ;
MOFFATT, DJ ;
HOLLBERG, MR ;
MANTSCH, HH .
APPLIED SPECTROSCOPY, 1991, 45 (03) :411-416
[7]  
Morse P. M., 1953, METHODS THEORETICAL
[8]  
PALIK ED, 1985, HDB OPTICAL CONSTANT, P703
[9]   KRAMERS-KRONIG RELATIONS IN OPTICAL-DATA INVERSION [J].
PEIPONEN, KE ;
VARTIAINEN, EM .
PHYSICAL REVIEW B, 1991, 44 (15) :8301-8303
[10]  
PRESS WH, 1989, NUMERICAL RECIPES