ANAEROBIC DEGRADATION OF CATECHOL BY DESULFOBACTERIUM SP STRAIN CAT2 PROCEEDS VIA CARBOXYLATION TO PROTOCATECHUATE

被引:46
作者
GORNY, N [1 ]
SCHINK, B [1 ]
机构
[1] UNIV KONSTANZ,FAK BIOL,D-78434 CONSTANCE,GERMANY
关键词
D O I
10.1128/AEM.60.9.3396-3400.1994
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Under anoxic conditions, most methoxylated mononuclear aromatic compounds are degraded by bacteria, with catechol being formed as an important intermediate. On the basis of our experiments with the sulfate-reducing bacterium Desulfobacterium sp. strain Cat2, we describe for the first time the enzymatic activities involved in the complete anaerobic oxidation of catechol and protocatechuate. Results obtained from experiments with dense cell suspensions of strain Cat2 demonstrated that all enzymes necessary for protocatechuate and benzoate degradation were induced during growth with catechol. In addition, anaerobic oxidation of catechol was found to be a CO2-dependent process. Phenol was not degraded in suspensions of cells grown vith catechol. In cell extracts of Desulfobacterium sp. strain Cat2, protocatechuyl-coenzyme A (CoA) was formed from catechol, bicarbonate, and uncombined CoA. This oxygen-sensitive reaction requires high concentrations of both bicarbonate and protein, and only very low levels of enzyme were detected. In a second oxygen-sensitive step, protocatechuyl-CoA was reduced to 3-hydroxybenzoyl-CoA by reductive elimination of the p-hydroxyl group. Further dehydroxylation to benzoyl-CoA was not detectable. Key reactions described for anaerobic degradation of benzoate were catalyzed by cell extracts of strain Cat2, too.
引用
收藏
页码:3396 / 3400
页数:5
相关论文
共 28 条
[1]   SELECTIVE ISOLATION OF ACETOBACTERIUM-WOODII ON METHOXYLATED AROMATIC-ACIDS AND DETERMINATION OF GROWTH YIELDS [J].
BACHE, R ;
PFENNIG, N .
ARCHIVES OF MICROBIOLOGY, 1981, 130 (03) :255-261
[2]   The methanogenic biodegradation of catechol by a microbial consortium: evidence for the production of phenol through cis-benzenediol [J].
Balba, Mohamed T. ;
Evans, W. Charles .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1980, 8 :452-453
[3]  
BERGMEYER HU, 1983, METHODS ENZYMATIC AN, V2
[4]   ENZYMES OF ANAEROBIC METABOLISM OF PHENOLIC-COMPOUNDS - 4-HYDROXYBENZOYL-COA REDUCTASE (DEHYDROXYLATING) FROM A DENITRIFYING PSEUDOMONAS SPECIES [J].
BRACKMANN, R ;
FUCHS, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 213 (01) :563-571
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   PYROGALLOL-TO-PHLOROGLUCINOL CONVERSION AND OTHER HYDROXYL-TRANSFER REACTIONS CATALYZED BY CELL-EXTRACTS OF PELOBACTER-ACIDIGALLICI [J].
BRUNE, A ;
SCHINK, B .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :1070-1076
[7]   MICRODETERMINATION OF PHOSPHORUS [J].
CHEN, PS ;
TORIBARA, TY ;
WARNER, H .
ANALYTICAL CHEMISTRY, 1956, 28 (11) :1756-1758
[8]  
Colberg P., 1988, BIOL ANAERO BIC MICR, P150
[9]  
DACRE JC, 1962, BIOCHEM J, V84, pP81
[10]   CARBON-MONOXIDE OXIDATION BY CLOSTRIDIUM-THERMOACETICUM AND CLOSTRIDIUM-FORMICOACETICUM [J].
DIEKERT, GB ;
THAUER, RK .
JOURNAL OF BACTERIOLOGY, 1978, 136 (02) :597-606