CONVERGENCE OF A GENERALIZED SUBGRADIENT METHOD FOR NONDIFFERENTIABLE CONVEX-OPTIMIZATION

被引:28
作者
KIM, S
AHN, H
机构
[1] Department of Management Science, Korea Advanced Institute of Science and Technology, Chongryang, Seoul
关键词
SUBGRADIENT METHOD; EPSILON-SUBGRADIENT; NONDIFFERENTIABLE OPTIMIZATION;
D O I
10.1007/BF01594925
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A generalized subgradient method is considered which uses the subgradients at previous iterations as well as the subgradient at current point. This method is a direct generalization of the usual subgradient method. We provide two sets of convergence conditions of the generalized subgradient method. Our results provide a larger class of sequences which converge to a minimum point and more freedom of adjustment to accelerate the speed of convergence.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 22 条
  • [1] Camerini P.M., 1975, MATH PROGRAMMING STU, P26, DOI DOI 10.1007/BFB0120697
  • [2] CHEPURNOJ ND, 1982, KIBERNETIKA, P127
  • [3] CHEPURNOJ ND, 1987, WP8762 IIASA
  • [4] Demyanov V.F., 1985, NONDIFFERENTIABLE OP
  • [5] ERMOLEV JM, 1967, KIBERNETIKA, P101
  • [6] ERMOLEV JM, 1976, STOCHASTIC PROGRAMMI
  • [7] GLUSHKOVA OV, 1980, KIBERNETIKA, P128
  • [8] GUPAL AM, 1972, KIBERNETIKA, P125
  • [9] 2-DIRECTION SUBGRADIENT METHOD FOR NON-DIFFERENTIABLE OPTIMIZATION PROBLEMS
    KIM, S
    KOH, S
    AHN, H
    [J]. OPERATIONS RESEARCH LETTERS, 1987, 6 (01) : 43 - 46
  • [10] KIM S, IN PRESS J OPTIMIZAT