COHERENT QUALITATIVE PROBABILITY

被引:24
作者
COLETTI, G
机构
[1] Dipartimento di Matematica, Università di Perugia
关键词
D O I
10.1016/0022-2496(90)90034-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note introduces the concepts of coherent, positive coherent, and strongly coherent qualitative probability. The first interesting result is that such a qualitative probability can be extended from a given domain (not necessarily an algebra) to an arbitrary larger one. The most important result of this paper consists in proving that coherent qualitative probabilities can be represented by the Finetti's coherent previsions. © 1990.
引用
收藏
页码:297 / 310
页数:14
相关论文
共 16 条
[1]   ARCHIMEDEAN QUALITATIVE PROBABILITIES [J].
CHATEAUNEUF, A ;
JAFFRAY, JY .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1984, 28 (02) :191-204
[2]  
de Finetti B., 1931, FUNDAMENTA MATEMATIC, V17, P293
[3]  
DEFINETTI B, 1970, THEORY PROBABILITY
[4]  
DEFINETTI B, 1930, REND ACC NAZ LINCEI, V12, P367
[5]   FINITELY ADDITIVE CONDITIONAL PROBABILITIES, CONGLOMERABILITY AND DISINTEGRATIONS [J].
DUBINS, LE .
ANNALS OF PROBABILITY, 1975, 3 (01) :89-99
[6]  
FENCHEL W, 1951, SPR LECT PRINC U
[7]  
HOLZER S, 1985, ANAL FUNZIONALE AP C, V4, P441
[8]   INTUITIVE PROBABILITY ON FINITE SETS [J].
KRAFT, CH ;
PRATT, JW ;
SEIDENBERG, A .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (02) :408-419
[9]  
KRANTZ DH, 1971, F MEASUREMENT
[10]   REPRESENTATION OF CONDITIONAL PROBABILITY MEASURES ON BOOLEAN ALGEBRAS [J].
KRAUSS, PH .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (3-4) :229-&