EXACT FIT POINTS UNDER SIMPLE REGRESSION WITH REPLICATION

被引:8
作者
COAKLEY, CW
MILI, L
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,DEPT STAT,BLACKSBURG,VA 24061
[2] VIRGINIA POLYTECH INST & STATE UNIV,BRADLEY DEPT ELECT ENGN,BLACKSBURG,VA 24061
基金
美国国家科学基金会;
关键词
LEAST MEDIAN OF SQUARES; LEAST TRIMMED SQUARES; REGRESSION EQUIVARIANCE; GENERAL POSITION; REPLICATION; BREAKDOWN POINT; EXACT FIT POINT;
D O I
10.1016/0167-7152(93)90201-S
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For simple regression with replication and fixed carriers, we determine the highest possible exact fit Point of a regression equivariant estimator and show that it is less than 50% (even asymptotically). We determine the optimal value of the quantile index in the Least median of squares and Least trimmed squares estimators and show that these estimators can attain the upper bound on the exact fit point. The main finding of the paper is that the quantile index must be adjusted upward from the usual value in order to achieve this bound.
引用
收藏
页码:265 / 271
页数:7
相关论文
共 14 条
[1]  
Apostol T., 1974, MATH ANAL
[2]  
COAKLEY CW, 1992, NONPAR STAT, V1, P267
[3]  
Donoho D., 1983, FESTSCHRIFT EL LEHMA, P157
[4]   LEVERAGE AND BREAKDOWN IN L1 REGRESSION [J].
ELLIS, SP ;
MORGENTHALER, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) :143-148
[5]  
Hampel F. R., 1975, B INT STAT I, V46, P375
[6]  
HAMPEL FR, 1986, ROBUST STATISTICS AP
[7]  
HAMPEL FR, 1986, 1ST P WORLD C BERN S
[8]  
MILI L, 1992, 35TH P IEEE MIDW S C
[9]  
Mili L., 1990, ADV IND SYSTEMS SER, V37, P271
[10]  
NETER J, 1985, APPLIED LINEAR STATI