EXTENSION-THEOREMS ON WEIGHTED SOBOLEV SPACES

被引:86
作者
CHUA, SK
机构
关键词
D O I
10.1512/iumj.1992.41.41053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w(i) is-an-element-of A(p)i, 1 less-than-or-equal-to p(i) < infinity for i = 1, 2,..., N. For any unbounded (epsilon, infinity) domain D, by modifying a technique of P. Jones (cf [11]), we show that there exists an extension operator LAMBDA on D such that parallel-to del(k)i LAMBDA f parallel-to L(w)i(p)i(R(n)) less-than-or-equal-to C(i) parallel-to del(k)i f parallel-to L(w)i(p)i (D) for all i where C(i) depends only on epsilon, w(i), k(i), n and max(i)k(i). Moreover, when D is a bounded (epsilon, infinity) domain, a similar but weaker result holds. We also extend P. Jones' result on (epsilon, delta) domains to A(p)-weighted Sobolev spaces. Finally, many applications such as Sobolev interpolation inequalities and Nirenberg-type inequalities on (epsilon, infinity) domains are given.
引用
收藏
页码:1027 / 1076
页数:50
相关论文
共 21 条
[1]  
BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
[2]  
Calderon A.-P., 1961, P S PURE MATH, VIV, P33
[3]   POINCARE INEQUALITIES FOR A CLASS OF NON-A(P) WEIGHTS [J].
CHANILLO, S ;
WHEEDEN, RL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (03) :605-623
[4]   A NOTE ON A WEIGHTED SOBOLEV INEQUALITY [J].
CHIARENZA, F ;
FRASCA, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (04) :703-704
[5]   THE EXTENSION PROBLEM FOR CERTAIN FUNCTION-SPACES INVOLVING FRACTIONAL ORDERS OF DIFFERENTIABILITY [J].
CHRIST, M .
ARKIV FOR MATEMATIK, 1984, 22 (01) :63-81
[6]  
CHUA SK, IN PRESS P AM MATH S
[7]  
CHUA SK, IN PRESS ILLINOIS J
[8]  
CHUA SK, 1991, THESIS RUTGERS U
[9]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[10]  
Gilbarg D., 1977, GRUNDLEHREN MATH WIS, V224, DOI DOI 10.1007/978-3-642-61798-0