WAVELET SHRINKAGE - ASYMPTOPIA

被引:24
作者
DONOHO, DL
JOHNSTONE, IM
KERKYACHARIAN, G
PICARD, D
机构
[1] STANFORD UNIV,DEPT STAT,STANFORD,CA 94305
[2] UNIV PICARDIE,AMIENS,FRANCE
[3] UNIV PARIS 07,PARIS,FRANCE
来源
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL | 1995年 / 57卷 / 02期
关键词
ADAPTIVE ESTIMATION; BESOV SPACES; DENSITY ESTIMATION; MINIMAX ESTIMATION; NONPARAMETRIC REGRESSION; OPTIMAL RECOVERY; SPATIAL ADAPTATION; WAVELET ORTHONORMAL BASES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Much recent effort has sought asymptotically minimax methods for recovering infinite dimensional objects-curves, densities, spectral densities, images-from noisy data. A now rich and complex body of work develops nearly or exactly minimax estimators for an array of interesting problems. Unfortunately, the results have rarely moved into practice, for a variety of reasons-among them being similarity to known methods, computational intractability and lack of spatial adaptivity. We discuss a method for curve estimation based on n noisy data: translate the empirical wavelet coefficients towards the origin by an amount root(2 log n)sigma/root n. The proposal differs from those in current use, is computationally practical and is spatially adaptive; it thus avoids several of the previous objections. Further, the method is nearly minimax both for a wide variety of loss functions-pointwise error, global error measured in L(p)-norms, pointwise and global error in estimation of derivatives-and for a wide range of smoothness classes, including standard Holder and Sobolev classes, and bounded variation. This is a much broader near optimality than anything previously proposed: we draw loose parallels with near optimality in robustness and also with the broad near eigenfunction properties of wavelets themselves. Finally, the theory underlying the method is interesting, as it exploits a correspondence between statistical questions and questions of optimal recovery and information-based complexity.
引用
收藏
页码:301 / 337
页数:37
相关论文
共 75 条
[1]  
ANSCOMBE FJ, 1948, BIOMETRIKA, V35, P246, DOI 10.1093/biomet/35.3-4.246
[2]  
Auscher P., 1992, WAVELETS, P237
[3]   APPROXIMATION IN METRIC-SPACES AND ESTIMATION THEORY [J].
BIRGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :181-237
[4]   THE GRENANDER ESTIMATOR - A NONASYMPTOTIC APPROACH [J].
BIRGE, L .
ANNALS OF STATISTICS, 1989, 17 (04) :1532-1549
[5]  
Birge L., 1985, PROBABILITY MATH STA, V5, P21
[6]   VARIABLE KERNEL ESTIMATES OF MULTIVARIATE DENSITIES [J].
BREIMAN, L ;
MEISEL, W ;
PURCELL, E .
TECHNOMETRICS, 1977, 19 (02) :135-144
[7]  
Breiman L, 1983, CART CLASSIFICATION
[8]   ESTIMATION OF DENSITIES - MINIMAL RISK [J].
BRETAGNOLLE, J ;
HUBER, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (02) :119-137
[9]   LOCALLY ADAPTIVE BANDWIDTH CHOICE FOR KERNEL REGRESSION-ESTIMATORS [J].
BROCKMANN, M ;
GASSER, T ;
HERRMANN, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) :1302-1309
[10]  
BROWN LD, 1992, UNPUB CONSTRAINED RI