Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes

被引:357
作者
Kim, YB
Nikoulina, SE
Ciaraldi, TP
Henry, RR
Kahn, BB
机构
[1] Beth Israel Deaconess Med Ctr, Diabet Unit, Dept Med, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA 02215 USA
[3] Univ Calif San Diego, Dept Med, San Diego, CA 92161 USA
[4] Vet Affairs San Diego Hlth Care Syst, San Diego, CA 92161 USA
关键词
D O I
10.1172/JCI6928
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
To determine whether the serine/threonine kinase Akt (also known as protein kinase B) is activated in vivo by insulin administration in humans, and whether impaired activation of Akt could play a role in insulin resistance, we measured the activity and phosphorylation of Akt isoforms in skeletal muscle from 3 groups of subjects: lean, obese nondiabetic, and obese type 2 diabetic. Vastus lateralis biopsies were taken in the basal (overnight fast) and insulin-stimulated (euglycemic clamp) states. Insulin-stimulated glucose disposal was reduced 31% in obese subjects and 63% in diabetic subjects, compared with lean subjects. Glycogen synthase (GS) activity in the basal state was reduced 28% in obese subjects and 49% in diabetic subjects, compared with lean subjects. Insulin-stimulated GS activity was reduced 30% in diabetic subjects. Insulin treatment activated the insulin receptor substrate-l-associated (IRS-l-associated) phosphoinositide 3-kinase (PI 3-kinase) 6.1-fold in lean, 3.7-fold in obese, and 2.4-fold in diabetic subjects. Insulin also stimulated IRS-2-associated PI S-kinase activity 2.2-fold in lean subjects, but only IA-fold in diabetic subjects. Basal activity ofAkt1/Akt2 (Akt1/2) and Akt3 was similar in all groups. Insulin increased Akt1/2 activity 1.7- to 2.0-fold, and tended to activate Akt3, in all groups. Insulin-stimulated phosphorylation ofAkt1/2 was normal in obese and diabetic subjects. In lean subjects only, insulin-stimulated Akt1/2 activity correlated with glucose disposal rate. Thus, insulin activation of Akt isoforms is normal in muscle of obese nondiabetic and obese diabetic subjects, despite decreases of approximately 50% and 39% in IRS-1- and IRS-2-associated PI 3-kinase activity, respectively, in obese diabetic subjects. It is therefore unlikely that Akt plays a major role in the resistance to insulin action on glucose disposal or GS activation that is observed in muscle of obese type 2 diabetic subjects.
引用
收藏
页码:733 / 741
页数:9
相关论文
共 65 条
[1]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[2]   Mechanism of activation and function of protein kinase B [J].
Alessi, DR ;
Cohen, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) :55-62
[3]   A RETROVIRAL ONCOGENE, AKT, ENCODING A SERINE-THREONINE KINASE CONTAINING AN SH2-LIKE REGION [J].
BELLACOSA, A ;
TESTA, JR ;
STAAL, SP ;
TSICHLIS, PN .
SCIENCE, 1991, 254 (5029) :274-277
[4]   Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation [J].
Bjornholm, M ;
Kawano, Y ;
Lehtihet, M ;
Zierath, JR .
DIABETES, 1997, 46 (03) :524-527
[5]   OKADAIC ACID, VANADATE, AND PHENYLARSINE OXIDE STIMULATE 2-DEOXYGLUCOSE TRANSPORT IN INSULIN-RESISTANT HUMAN SKELETAL-MUSCLE [J].
CAREY, JO ;
AZEVEDO, JL ;
MORRIS, PG ;
PORIES, WJ ;
DOHM, GL .
DIABETES, 1995, 44 (06) :682-688
[6]   Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways [J].
Ceresa, BP ;
Kao, AW ;
Santeler, SR ;
Pessin, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (07) :3862-3870
[7]   PHOSPHATIDYLINOSITOL 3-KINASE ACTIVATION IS REQUIRED FOR INSULIN STIMULATION OF PP70 S6 KINASE, DNA-SYNTHESIS, AND GLUCOSE-TRANSPORTER TRANSLOCATION [J].
CHEATHAM, B ;
VLAHOS, CJ ;
CHEATHAM, L ;
WANG, L ;
BLENIS, J ;
KAHN, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (07) :4902-4911
[8]   INSULIN ACTION AND THE INSULIN SIGNALING NETWORK [J].
CHEATHAM, B ;
KAHN, CR .
ENDOCRINE REVIEWS, 1995, 16 (02) :117-142
[9]   THE ROLE OF PROTEIN-PHOSPHORYLATION IN THE HORMONAL-CONTROL OF ENZYME-ACTIVITY [J].
COHEN, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1985, 151 (03) :439-448
[10]   Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells [J].
Cong, LN ;
Chen, H ;
Li, YH ;
Zhou, LX ;
McGibbon, MA ;
Taylor, SI ;
Quon, MJ .
MOLECULAR ENDOCRINOLOGY, 1997, 11 (13) :1881-1890