CHAOTIC ATTRACTORS ON A 3-TORUS, AND TORUS BREAK-UP

被引:33
作者
BATTELINO, PM
GREBOGI, C
OTT, E
YORKE, JA
机构
[1] UNIV MARYLAND,PLASMA RES LAB,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[4] UNIV MARYLAND,INST PHYS SCI & TECH,COLLEGE PK,MD 20742
来源
PHYSICA D | 1989年 / 39卷 / 2-3期
关键词
D O I
10.1016/0167-2789(89)90012-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:299 / 314
页数:16
相关论文
共 18 条
[1]   BIFURCATIONS FROM AN INVARIANT CIRCLE FOR 2-PARAMETER FAMILIES OF MAPS OF THE PLANE - A COMPUTER-ASSISTED STUDY [J].
ARONSON, DG ;
CHORY, MA ;
HALL, GR ;
MCGEHEE, RP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (03) :303-354
[2]   PERSISTENCE OF 3-FREQUENCY QUASIPERIODICITY UNDER LARGE PERTURBATIONS [J].
BATTELINO, PM .
PHYSICAL REVIEW A, 1988, 38 (03) :1495-1502
[3]   KOLMOGOROV ENTROPY OF A DYNAMICAL SYSTEM WITH AN INCREASING NUMBER OF DEGREES OF FREEDOM [J].
BENETTIN, G ;
FROESCHLE, C ;
SCHEIDECKER, JP .
PHYSICAL REVIEW A, 1979, 19 (06) :2454-2460
[4]  
Benettin G., 1980, MECCANICA, V15, P9, DOI 10.1007/BF02128236
[5]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[6]   ATTRACTORS ON AN N-TORUS - QUASIPERIODICITY VERSUS CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1985, 15 (03) :354-373
[7]   ARE 3-FREQUENCY QUASI-PERIODIC ORBITS TO BE EXPECTED IN TYPICAL NON-LINEAR DYNAMICAL-SYSTEMS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 51 (05) :339-342
[8]  
GREENE JM, 1986, GAA18270 TECH REP
[9]  
KANEKO K, 1984, PROG THEOR PHYS, V71, P1
[10]  
Kaplan J., 1978, LECT NOTES MATH, V730, P228