About 10 % of 100 clinical isolates of Enterococcus faecalis were resistant to greater-than-or-equal-to 25-mu-g of norfloxacin, ofloxacin, ciprofloxacin, and temafloxacin per ml. In this study, the DNA gyrase of E. faecalis was purified from a fluoroquinolone-susceptible strain (ATCC 19433) and two resistant isolates, MS16968 and MS16996. Strains MS16968 and MS16996 were 64- to 128-fold and 16- to 32-fold less susceptible, respectively, to fluoroquinolones than was ATCC 19433; MICs of nonquinolone antibacterial agents for these strains were almost equal. The DNA gyrase from ATCC 19433 had two subunits, designated A and B, with properties similar to those of DNA gyrases from other gram-positive bacteria such as Bacillus subtilis and Micrococcus luteus. Inhibition of the supercoiling activity of the enzyme from ATCC 19433 by the fluoroquinolones correlated with their anti-bacterial activities. In contrast, preparations of DNA gyrase from MS16968 and MS16996 were at least 30-fold less sensitive to inhibition of supercoiling by the fluoroquinolones than the gyrase from ATCC 19433 was. Experiments that combined heterologous gyrase subunits showed that the A subunit from either of the resistant isolates conferred resistance to fluoroquinolones. These findings indicate that an alteration in the gyrase A subunit is the major contributor to fluoroquinolone resistance in E. faecalis clinical isolates. A difference in drug uptake may also contribute to the level of fluoroquinolone resistance in these isolates.